• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Jefferson researchers identify new target for chronic pain

Bioengineer by Bioengineer
July 19, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PHILADELPHIA — Proteins must be in the right place at the right time in the cell to function correctly. This is even more critical in a neuron than in other cells because of its complex tree-like structure and its function. Researchers at Thomas Jefferson University have now discovered how phosphorylation, a common type of protein modification, functions in a novel way to change the location of proteins that are critical for both neuronal function and pathological pain. They find that phosphorylation can occur outside of the neuron and impacts protein function, localization and the sensation of pain.

The research, published July 18 in PLOS Biology, offers a potential new target for developing an alternative to existing pain medication.

"Although we have yet to discover the exact mechanism that causes this modification," says senior and corresponding author Matthew Dalva, Ph.D., Professor and Vice Chair in the Department of Neuroscience in The Vickie and Jack Farber Institute for Neuroscience at the Sidney Kimmel Medical College, Thomas Jefferson University, "This finding offers both a target for developing new treatments and a strong new tool for studying synapses in general."

Unlike pain caused by inflammation or impact, pathologic pain often comes from neuronal dysfunction, such that pain is felt even when there is no underlying cause or continues after the initiating event is long past, such as migraines or chronic pain.

Researchers have shown that the NMDA receptor on neurons plays a central role in pathologic pain, but it's also important in many other neurological processes such as memory and learning, making it a poor target for direct drug inhibition.

In an elegant series of studies, Dr. Dalva and colleagues from New York University and the University of Texas at Dallas, showed that in response to pain, a second receptor, the ephrin B receptor, is phosphorylated outside of the neuron. This extracellular protein modification allows the ephrin B receptor, EphB2, to glom onto the NMDA receptor. This interaction then moves the NMDA receptors into the synaptic space, and modifies NMDA receptor function, resulting in increased pain sensitivity.

The researchers also showed that chemicals that block the interaction between the EphB2 and the NMDA receptor block pain. The converse was also true. By artificially promoting the interaction between these two receptors, neurons became oversensitive to pain, such that a mere touch would cause a painful reaction, or allodynia.

"Because the protein modification that initiates nerve sensitivity to pain occurs outside of the cell, it offers us an easier target for drug development," says Dr. Dalva. "This is a promising advance in the field of pain management."

The discovery that phosphorylation can drive NMDA receptors to synaptic sites provides neuroscientists a new tool with which to study synaptic development, learning and memory, and pain — all of which depend on the localization of NMDA receptors to synaptic sites.

###

The research was supported by National Institute on Drug Abuse (DA022727), National Institute of Mental Health (MH100093), National Institute of General Medicine (GM102575), National Center for Research Resources (RR027990), 100 Women in Hedge Fund Foundation, National Eye Institute Vision Training Grant (EY007035), National Institute of Neurological Disorders and Stroke (NS050276), National Institute of Neurological Disorders and Stroke (NS065926), and The Vicki and Jack Farber Foundation.

Article reference: K. Hanamura et al., "Extracellular phosphorylation of a receptor tyrosine kinase controls synaptic localization of NMDA receptors and regulates pathological pain," PLOS Biol 15(7): e2002457, https://doi.org/10.1371/journal.pbio.2002457, 2017.

About Jefferson
Jefferson, through its academic and clinical entities of Thomas Jefferson University and Jefferson Health, including Abington Health and Aria Health, is reimagining health care for the greater Philadelphia region and southern New Jersey. Jefferson has 23,000 people dedicated to providing the highest-quality, compassionate clinical care for patients, educating the health professionals of tomorrow, and discovering new treatments and therapies to define the future of care. With a university and hospital that date back to 1824, today Jefferson is comprised of six colleges, nine hospitals, 35 outpatient and urgent care locations, and a multitude of physician practices throughout the region, serving more than 100,000 inpatients, 373,000 emergency patients and 2.2 million outpatients annually.

Media Contact

Gail Benner
[email protected]
215-955-2240
@JeffersonUniv

http://www.jefferson.edu/

Share12Tweet7Share2ShareShareShare1

Related Posts

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

September 3, 2025

Tech-Enhanced Nursing Strategies Boost TB Medication Adherence

September 3, 2025

Dad’s Childhood Exposure to Passive Smoking May Impact Kids’ Lung Health for Life

September 3, 2025

Diabetes Therapy Quality of Life Tied to Mortality

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    296 shares
    Share 118 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Art Education with Multimodal Deep Learning

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

Transforming Date Palm Waste into Probiotic Yogurt Enhancements

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.