• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Jackiw-Rebbi zero-mode: Realizing non-Abelian braiding in non-Majorana system

Bioengineer by Bioengineer
February 7, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press


As an important branch of quantum computation, topological quantum computation has been drawing extensive attention for holding great advantages such as fault-tolerance. Topological quantum computation is based on the non-Abelian braiding of quantum states, where the non-Abelian braiding in the field of quantum statistics is highly related to the non-locality of the quantum states. The exploration on topological quantum computation in the last two decades is mainly focused on Majorana fermion (or its zero-energy incarnation known as Majorana zero-mode), an exotic particle possessing non-Abelian statistics and well-known for its anti-particle being itself.

Jackiw-Rebbi zero-mode was firstly raised in the field of high energy physics in 1970s. With the growing importance of topology in the area of condensed matter physics, the concept of Jackiw-Rebbi zero-mode was also adopted to refer to the topologically protected zero-mode in the boundary of topological insulator. In contrast with the Majorana zero-mode only presented with non-vanishing superconducting order parameter, Jackiw-Rebbi zero-mode is not self-conjugate and therefore could be presented even in the absence of particle-hole symmetry.

Recently, in a research article entitled as “Double-frequency Aharonov-Bohm effect and non-Abelian braiding properties of Jackiw-Rebbi zero-mode” published in National Science Review, researchers from four universities including Peking University and Xi’an Jiaotong University claimed a new method realizing non-Abelian braiding. Co-authors Yijia Wu, Haiwen Liu, Jie Liu, Hua Jiang, and X. C. Xie demonstrated that the Jackiw-Rebbi zero-modes widely existed in topological insulators also support non-Abelian braiding.

In this work, the authors constructed Jackiw-Rebbi zero-modes in a quantum spin Hall insulator. Through showing the Aharonov-Bohm oscillation frequency of the Jackiw-Rebbi zero-mode intermediated transport is doubled, they claimed that the Majorana zero-mode can be viewed as a special case of Jackiw-Rebbi zero-mode with particle-hole symmetry. In the method of numerical simulation, they also demonstrated that non-Abelian braiding properties are exhibited by Jackiw-Rebbi zero-modes in the absence of superconductivity. The authors believed that these results not only make theoretical progress exhibiting the charming properties of Jackiw-Rebbi zero-mode, but also provide the possibility realizing topological quantum computation in a non-Majorana (non-superconductivity) system.

This latest research also put forward a generalized and continuously tunable fusion rule in topological quantum computation when the degeneracy of Jackiw-Rebbi zero-modes is lifted. The authors concluded that Jackiw-Rebbi zero-mode could be a new candidate for topological quantum computation and holds additional advantages compared with its Majorana cousin: (1) the superconductivity is no longer required; (2) possesses generalized fusion rule; and (3) the energy gap is generally larger.

###

This work received funding from the National Basic Research Program of China and National Natural Science Foundation of China.

See the article:

Yijia Wu, Haiwen Liu, Jie Liu, Hua Jiang, and X. C. Xie

Double-frequency Aharonov-Bohm effect and non-Abelian braiding properties of Jackiw-Rebbi zero-mode

https://doi.org/10.1093/nsr/nwz189

Media Contact
Yijia Wu
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz189

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.