• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

ISB develops stress test to predict how diatoms will react to ocean acidification

Bioengineer by Bioengineer
June 13, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SEATTLE, June 13, 2018 — Researchers at the Institute for Systems Biology (ISB) have shown that diatoms can withstand population collapse in an acidified environment by conserving valuable energy normally used for carbon dioxide consumption.

Diatoms are microscopic phytoplankton that are the foundation for many aquatic food webs, and are responsible for 40 percent of the total carbon sequestered in our oceans and release about 20 percent of the world's breathable oxygen. The impacts of ocean acidification on diatoms have not been completely understood, but a study titled " Ocean Acidification Conditions Increase Resilience of Marine Diatoms," published today in the journal Nature Communications, provides context.

"To date, the effects of ocean acidification on diatoms have been mixed, mainly because of the complex interactions between the biology and physical chemistry. We decided to take a new and different approach to this biological question by exposing the diatom to a stress test," said Dr. Jacob Valenzuela, a postdoctoral fellow in ISB's Baliga Lab and lead author on the study. "By using a systems biology approach in conjunction with a stress test, we were able to demonstrate diatom resilience increases under ocean acidification conditions," Valenzuela said.

In the study, researchers observed that diatoms at a lower pH were consistently more capable of adopting the appropriate cellular function in relation to their environment – a phenomenon that staves off population collapse.

Climate change-induced ocean acidification may make diatoms more resilient, but it could also have adverse effects on other phytoplankton populations, potentially shifting them from stable to sensitive, Valenzuela said. The impacts of such a foundational shift may ripple throughout the marine ecosystems. The experimental framework developed in this study may be extended to evaluate the effects of many potential climate change-related threats on the microbial diversity of our most sensitive environmental habitats.

If diatoms were to shrink or explode in population abundance, there would be significant implications for marine food webs and beyond. For instance, coral reefs and fisheries rely on stable phytoplankton communities to feed higher organisms along the food chain like krill, fish and whales. Understanding how diatoms will respond to the impacts of climate change, and in particular ocean acidification, will be critical in predicting future outcomes that guide proactive conservation efforts.

###

About the Institute for Systems Biology

The Institute for Systems Biology is a nonprofit biomedical research organization based in Seattle. It was founded in 2000 by systems biologist Leroy Hood, immunologist Alan Aderem, and protein chemist Reudi Aebersold. ISB was established on the belief that the conventional models for exploring and funding breakthrough science have not caught up with the real potential of what is possible today. ISB serves as the ultimate environment where scientific collaboration stretches across disciplines and across academic and industrial organizations, where our researchers have the intellectual freedom to challenge the status quo, and where grand visions for breakthroughs in human health inspire a collective drive to achieve the seemingly impossible. Our core values ensure that we always keep our focus on the big ideas that eventually will have the largest impact on human health. ISB is an affiliate of Providence St. Joseph Health, one of the largest not-for-profit health care systems in the United States.

Media contact: Joe Myxter, 425.829.8275, [email protected]

Media Contact

Joe Myxter
[email protected]
425-829-8275

http://www.systemsbiology.org

https://www.systemsbiology.org/news/2018/06/13/isb-develops-stress-test-to-predict-how-diatoms-will-react-to-ocean-acidification/

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-04742-3

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New 18F-labeled Compound Targets COX-2 Imaging

New Study Highlights Positive Impact of Diet and Exercise on Alcohol-Induced Liver Damage

CytoSorb® Enhanced Hemadsorption in Cardiac Surgery Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.