• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Is this the long-sought answer to the question of tropical biodiversity?

Bioengineer by Bioengineer
June 29, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Steve Paton, STRI

Visitors to the tropics are amazed by the huge variety of colorful, complex and sometimes ferocious creatures living near the equator. Smithsonian scientists and colleagues in 24 countries studying more than 2 million trees observed a simple phenomenon that may explain why tropical forests are so much richer than are forests located nearer the poles. Their explanation, published in the June 30 issue of Science magazine, is a significant step toward answering a question that has been asked by natural historians for centuries: "Why is there so much biodiversity in tropical forests?"

"The 50 authors from 12 countries who contributed to this finding asked an enormously important question that has been on the minds of scientists since Darwin," said David J. Skorton, Secretary of the Smithsonian Institution. "Until now, there was no satisfying answer to the question of why there are so many species of trees in tropical forests. The Smithsonian Forest Global Earth Observatory network convened experts from around the world and provided the data to address this question at a global scale. The answer may be simply that voracious predators and pathogens specializing on particular tropical tree species thin them out, making them less vulnerable to more common enemies, resulting in forests with many more species than we have here."

At the 2016 ForestGEO workshop in Hainan, China, ecologists from long-term forest monitoring sites ranging from Gabon to Borneo addressed a question posed by Jonathan Myers, assistant professor, and Joe LaManna, postdoctoral research associate at Washington University, lead authors of the study published in Science.

"They analyzed data from 3,000 tree species and discovered that a phenomenon called Conspecific Negative Density Dependence, or CNDD, a process where population growth rates decline when individual species are at high local density, is much stronger in the tropics," said Stuart Davies, director of the Center for Tropical Forest Science-Forest Global Earth Observatory of the Smithsonian Tropical Research Institute.

"Many studies have observed that there are lots more rare species in tropical than in temperate forests," Davies said. "The finding that CNDD is stronger for rare species in the tropics is an important contribution to explaining this pattern."

When a lot of individuals of the same tree species grow in the same area, their numbers decline or increase more slowly than the numbers of rare species because they are both easier for pathogens and predators to find and because they may compete with each other for space and resources.

If it is less likely that tree seedlings will grow near other individuals of the same species in the tropics than in temperate forests, there should be more space for other species to grow in the same areas. Knowing that this phenomenon, CNDD, is stronger in the tropics helps to explain why there are more species in the tropical forests than in temperate forests.

Researchers are not yet sure why this is true. Perhaps the diseases that affect tropical trees and their seedlings are more contagious or severe than seeding and tree diseases in temperate regions.

"The Smithsonian's ForestGEO network is an international group of scientists and research sites that grew out of a project to understand tropical biodiversity in Panama nearly 40 years ago," said Matthew C. Larsen, director of the Smithsonian Tropical Research Institute. "It is wonderful to see how this network has grown. We facilitate research and build scientific capacity through training, grants and partnerships with universities and research organizations in 25 countries around the world and welcome new ideas that can be tested at this scale."

###

LaManna, J.A., Mangan, et al. 2017. Plant diversity increases with the strength of negative density dependence at the global scale. Science.

Media Contact

Sonia Tejada
[email protected]
202-633-4700 x28111
@stri_panama

http://www.stri.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.