• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

IPK research team uncovers mechanism for spikelet development in barley

Bioengineer by Bioengineer
May 22, 2024
in Biology
Reading Time: 2 mins read
0
Barley
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The inflorescence architecture of crop plants like barley is predominantly regulated by meristem activity and fate, which play a critical role in determining the number of floral structures for grain production. Spikelets are the basic reproductive unit of grass inflorescences. The identity and determinacy of many grass meristems are partially determined by a group of genes expressed specifically at organ boundaries, which can form local signalling centres that regulate adjacent meristem fate and activity.

Barley

Credit: IPK Leibniz Institute/ T. Schnurbusch

The inflorescence architecture of crop plants like barley is predominantly regulated by meristem activity and fate, which play a critical role in determining the number of floral structures for grain production. Spikelets are the basic reproductive unit of grass inflorescences. The identity and determinacy of many grass meristems are partially determined by a group of genes expressed specifically at organ boundaries, which can form local signalling centres that regulate adjacent meristem fate and activity.

These genes are critical for establishing and maintaining organs. Proteins regulate diverse cell identities, axillary meristem initiation, and proper development of neighbouring organs and tissues.

In this study, the research team characterised a barley spikelet developmental mutant, extra floret-a (flo.a). flo.a produced extra spikelets and fused glumes due to the defective establishment of organ boundaries, which separate meristems from developing organs, such as inflorescence meristem and developing spikelet primordia.

The gene HvALOG1 plays a crucial role in maintaining the inflorescence architecture of barley. On the one hand, the boundary-localized protein is associated with signals that confer proper development of the spikelet meristem (i.e. non-cell autonomously); on the other hand, it controls boundary formation between floral organs (autonomously). “We show that mutations in HvALOG1 lead to the production of extra spikelets and are linked to the fusion of floral organs derived from improper boundary formation”, says Guojing Jiang, first author of the study.   

“Our study offers new insights into the function of ALOG family members in regulating meristem activity and inflorescence development in barley”, says Prof. Dr. Thorsten Schnurbusch. “These findings may contribute to our understanding of the molecular mechanisms underlying inflorescence development and may have implications for crop improvement.”

The identification of the wheat gene ALOG-1 and its function during spikelet development has been described in the co-published article by Gauley et al., who show that wheat ALOG-1 is not expressed in the spikelet meristem but produces extra spikelets in the mutant, which is consistent with the effect found in barley. “Our joint results reveal an important and conserved mechanism of ALOG1 in specifying spikelet meristem determinacy and maintaining the characteristic spike-type inflorescence of cereals in Triticeae grasses”, says Prof. Dr. Thorsten Schnurbusch.



Journal

Current Biology

DOI

10.1016/j.cub.2024.04.083

Article Title

Non-cell Autonomous Signaling Associated with Barley ALOG1 Specifies Spikelet Meristem Determinacy

Article Publication Date

22-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Engineered Gut Bacteria Enhance Survival Rates in Colorectal Cancer Patients

Engineered Gut Bacteria Enhance Survival Rates in Colorectal Cancer Patients

September 22, 2025
blank

Unveiling Toxocara canis Excretory-Secretory Products’ Impact

September 22, 2025

Oxaloacetate Sensing Boosts Innate Flu Defense

September 22, 2025

Nasal Staph Affects Mice Mood by Hormone Breakdown

September 22, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Experts warn: Prepare for a rising number of West Nile virus infections

SwRI Marks the Completion of Its Cutting-Edge High-Speed Propulsion Engine Research Facility

New Growth Switch Uncovered That Enhances Plant Adaptability

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.