• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 2, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Intrinsic in-plane nodal chain and generalized quaternion charge protected nodal link in photonics

Bioengineer by Bioengineer
April 22, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Dongyang Wang, Biao Yang, Qinghua Guo, Ruo-Yang Zhang, Lingbo Xia, Xiaoqiang Su, Wen-Jie Chen, Jiaguang Han, Shuang Zhang, C. T. Chan

Topological photonics has attracted a lot of attention recently. The application of topological band theory to photonics not only opens the door to novel devices, but also stimulates the exploration of new topological phases. In the photonic regime, symmetries that are unique to electromagnetic (EM) waves can intrinsically protect the band degeneracies in the momentum space. Topological systems realized using such symmetries are uniquely “photonic”, having no counterparts in electronic or phononic systems.

Among various topological features in momentum space, nodal chain is a special configuration of nodal line where two nodal curves touch at isolated points. It is generally perceived that the two nodal lines should reside on two separate mirror planes, each protected by their corresponding mirror symmetries. The chain points are then found to be stabilized on their intersection lines as shown in Fig. 1. However, the in-plane type of nodal chain embedded in mere one mirror symmetry is generally unstable.

In a new paper published in Light Science & Application, a team of scientists, led by Professor C. T. Chan from Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China, and co-workers have proposed a photonic in-plane nodal chain which is stabilized by the intrinsic symmetry of EM waves. The in-plane nodal chain is uniquely stable in photonics due to the internal symmetries of the Maxwell equations and has no counterparts in other systems. They further developed non-Abelian nodal link in the absence of Parity-Time (PT) symmetry and protected by generalized quaternion charges.

In Fig. 2, the authors present the stable in-plane nodal chain in a photonic bianisotropic metamaterials. The chain point is located at the Γ point of zero frequency and is thus stable against perturbation due to the internal symmetry of EM waves. By introduced Lorentz resonance, a dispersionless longitudinal mode appears and intersects the propagating transverse mode as nodal ring. The in-plane nodal chain(blue) thread through the nodal ring(red) and from into nodal link. The nodal link is constructed by three adjacent bands which give enough freedom to define non-Abelian charges. The non-Abelian charges represent the frame rotations of a set of real eigenfunctions, which form the elements of non-Abelian (generalized) quaternion groups.

The generalized quaternion charges can elegantly explain or predict admissible transitions of the nodal link. In order to demonstrate the transition rule of the nodal link, artificial plasmon resonances are considered to introduce cut-off frequencies and force the chain point to break. In Fig. 2c-f, the green loop (larger one) possesses nontrivial generalized quaternion charge of -1, which governs that the encircled nodal line pairs cannot disappear. When the nodal chain break along horizontal direction, a new nodal ring (blue) has to emerge so as to conserve the charge of -1. In a different configuration, the nodal chain is allowed to break along vertical direction, since the green circle is still encircling a pair of nodal lines, and the -1 non-Abelian charge remains conserved.

By designing bi-anisotropic metamaterials, the authors realized the proposed topological structures in photonics. They further characterized the in-plane nodal chain and non-Abelian nodal link with microwave experiments.

###

Media Contact
Jiaguang Han
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00523-8

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Stepwise Catalytic Method Enables Diverse P(V) Stereochemistry

Stepwise Catalytic Method Enables Diverse P(V) Stereochemistry

January 2, 2026
Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    115 shares
    Share 46 Tweet 29
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

OAM Multiplication Sparks Advanced Holographic Multiplexing

IL-10 Targeting LDL Lowers Vascular Inflammation in Atherosclerosis

Insights on Eco-Friendly Cataract Surgery Practices

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.