• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Intestinal cells change functions during their lives

Bioengineer by Bioengineer
March 1, 2022
in Biology
Reading Time: 5 mins read
0
Differentiated human intestinal organoids
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Intestinal cells can change specializations during their lives. The BMP signaling pathway – an important communication mechanism between cells – appears to be the driver of these changes. That is wat scientists from the groups of Hans Clevers (Hubrecht Instituut) and Ye-Guang Chen (Tshinghua University, Beijing) have concluded after research with organoids and mice. The study will be published in Cell Reports on 1 March 2022 and offers new insights into potential targets for the treatment of metabolic diseases.

Differentiated human intestinal organoids

Credit: Joep Beumer, Jens Puschhof and Fjodor Yousef Yengej | Copyright Hubrecht Institute.

Intestinal cells can change specializations during their lives. The BMP signaling pathway – an important communication mechanism between cells – appears to be the driver of these changes. That is wat scientists from the groups of Hans Clevers (Hubrecht Instituut) and Ye-Guang Chen (Tshinghua University, Beijing) have concluded after research with organoids and mice. The study will be published in Cell Reports on 1 March 2022 and offers new insights into potential targets for the treatment of metabolic diseases.

 

The intestinal wall is made up of different types of cells. Some are for instance responsible for the uptake of nutrients, while others produce hormones. It was long thought that after their formation, intestinal cells specialize in one function that they continuously perform until they die. However, recent studies show that these cells can change specializations. Researchers from the groups of Hans Clevers and Ye-Guang Chen (Tsinghua University, Beijing) now discovered that these changes are driven by the BMP signaling pathway.

 

Driver of change

The BMP signaling pathway is one of many signaling pathways in the body. Such pathways form lines of communications between cells: with the production of a protein by one cell, it gives a signal to the next cell, which in turn produces proteins. Eventually, this whole cascade of protein production triggers certain processes – for example processes that are important during embryonic development. Joep Beumer, one of the researchers on the project, explains: “We knew that BMP signaling plays an important role in the initial specialization of intestinal cells. What we now discovered, is that it is also the driver of changes in the specializations of these cells over their lifetimes.

 

Migration

Intestinal cells arise from stem cells that lie in indentations (i.e. the crypts) of the intestinal wall. These intestinal cells then migrate up the intestinal villi. During their migration, they perform a certain function, for example the absorption of nutrients or the production of hormones. Once they reach the top of the villi, they die. “The function of intestinal cells changes during their migration along the villi. They for example produce antimicrobial components in the lower parts of the villi (at the start), while they are involved in absorbing fats later on in their journey,” says Beumer. This gradual change in the function of the cells is called zonation. “At the same time, the BMP signaling pathway is not very active in the crypts and in the lower parts of the villi, while it becomes more and more active higher up in the villi.

 

Human organoids

The scientists at the Clevers lab used intestinal organoids for their research. These are tiny 3D structures that can be grown in the lab and that mimic the function of the gut. In these miniature guts, the researchers were able to mimic conditions of low or high BMP signaling, similar to the altering environment along the intestinal villi. Using ‘Single cell RNA sequencing’, a technique that makes it possible to see which genes are active and which ones are not, they made a surprising discovery. Jens Puschhof explains: “When BMP was active in the organoids, the cells in these miniature guts were identical to the cells located in the top of the villi, while inactivation of BMP made the cells in the organoids resemble the cells located in the lower parts of the villi. In other words, zonation turned out to be dependent on the BMP signaling pathway.”

 

Mouse model

The results found in organoids had to be confirmed in living organisms. Colleagues from the group of Ye-Guang Chen used a mouse model in which BMP signaling could be turned off in the gut. In mice with an inactive BMP signaling pathway in the gut, intestinal cells no longer changed specializations during their migration from the crypts to the villi. “That confirmed our conclusion: BMP signaling is the driver behind zonation of intestinal cells,” says Beumer.

 

Methodological implications

The study, to be published in Cell Reports, has important implications for the use of organoids for research. “Normally, researchers inhibit BMP signaling in organoids,” says Fjodor Yousef Yengej. “Although this proved beneficial for growth, not all functions of the gut are represented in these cultures.” Activation of BMP signaling may be required for research into certain topics, such as fat absorption.

 

Treatment of metabolic diseases

In addition to providing these new fundamental insights into the functions of intestinal cells during their lives, the study may ultimately contribute to the development of new treatments for metabolic diseases. “In certain metabolic diseases, there is an accumulation of fat in parts of the body such as the liver, or an imbalance in gut hormones. We now know that active BMP signaling stimulates fat absorption, so if we can inhibit signaling in these patients, we can also influence fat absorption,” Beumer concludes. BMP inhibitors targeting the gut are yet to be developed, but would have broad beneficial effects on metabolism.

 

###

 

Publication

Beumer et al., BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states, Cell Reports (2022), https://doi.org/10.1016/j.celrep.2022.110438

 

Hans Clevers is group leader at the Hubrecht Institute for Developmental Biology and Stem Cell Research and at the Princess Máxima Center for Pediatric Oncology. He is also University Professor at the Utrecht University and Oncode Investigator.

 

About the Hubrecht Institute

The Hubrecht Institute is a research institute focused on developmental and stem cell biology. It encompasses 21 research groups that perform fundamental and multidisciplinary research, both in healthy systems and disease models. The Hubrecht Institute is a research institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), situated on Utrecht Science Park. Since 2008, the institute is affiliated with the UMC Utrecht, advancing the translation of research to the clinic. The Hubrecht Institute has a partnership with the European Molecular Biology Laboratory (EMBL). For more information, visit http://www.hubrecht.eu.



Journal

Cell Reports

DOI

10.1016/j.celrep.2022.110438

Method of Research

Experimental study

Subject of Research

Lab-produced tissue samples

Article Title

BMP gradient along the intestinal villus controls zonated enterocyte and goblet cell states

Article Publication Date

1-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Taenia Pisiformis Infection Alters Pregnant Rabbits’ Immune Response

September 9, 2025
blank

Tracing the Origins of Wnt Signaling Uncovers a Protein Superfamily Spanning the Tree of Life

September 9, 2025

From Quantum Mechanics to Quantum Microbes: A Yale Scientist’s Revolutionary Journey of Discovery

September 9, 2025

Scientists Harness Breakthrough Tool to Advance Canine Cancer Treatment

September 9, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Eco-Friendly Nutrient Management with Biostimulants in Crops

Kennesaw State Researcher Innovates Electronic Nose Technology to Combat Foodborne Illness

Neonatal Traits and Neurodevelopment in Congenital CMV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.