• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Internal mechanism found to be responsible for the limitless growth potential of epithelial tumors

Bioengineer.org by Bioengineer.org
January 20, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image: Mariana Muzzopappa, IRB Barcelona

Researchers from the Development and Growth Control Laboratory at IRB Barcelona have identified the cell types and molecular mechanism responsible for the unlimited growth potential of epithelial tumours (carcinomas) and demonstrated that the growth of these tumours is independent of its microenvironment. "In epithelial tumours caused by chromosomal instability or loss of cell polarity, the interaction between two tumour cell populations drives malignant growth," explains Marco Milán, ICREA Research Professor and head of the laboratory.

Published in the journal Proceedings of the National Academy of Sciences (PNAS) as a cover story of its 35 Issue, the study analyses solid tumours of epithelial origin in the fruit fly Drosophila melanogaster. "We have induced tumour development in two ways–by generating genomic instability and the loss of cell polarity. We have validated the causal relation between these two conditions–which are frequently observed in carcinomas–and the development of tumours," explains Mariana Muzzopappa, first author of the study and postdoctoral fellow in the Development and Growth Control Lab.

Independent of the tumour microenvironment

To study the effect of the microenvironment on tumour development, the researchers examined tumour growth in the absence of adjacent cell populations, such as cells of the immune system or mesenchymal cells, which can act as a niche by supplying tumours with growth factors. The scientists observed that the tumour continued to grow in the absence of these two cell types.

Furthermore, they demonstrated that "the growth of epithelial tumours is dependent on activation of the JNK stress signalling pathway and that this pathway is intrinsically activated in the tumour, regardless of its microenvironment," highlights Marco Milán.

Interactions between two tumour cell populations

The researchers have identified two functionally distinct cell populations within the tumour–one that proliferates and ones that does not–upon which internal growth mechanisms depend. "JNK is activated in a group of non-proliferating cells, namely those that show the highest degree of chromosomal instability or that have lost polarity. JNK triggers the expression of growth factors and makes those cells still in the epithelium to go on proliferating. The continued proliferation of these cells leads to an increase in chromosomal instability and the loss of epithelial polarity in the tumours. Consequently, the number of cells expressing growth factors rises. These cross-feeding interactions explain the unlimited growth potential of these epithelial tumours," says Muzzopappa.

The mechanism of JNK activation differs depending on the tumour. "We have observed that tumours derived from chromosomal instability are induced by oxidative stress caused by ROS (reactive oxygen species), which triggers JNK. The mechanism in tumours that arise from the loss of cell polarity differs," explains Marco Milán.

The results of this study shed further light on the causal relationship between chromosomal instability, loss of epithelial polarity and tumorigenesis and open new avenues for the search of therapeutic targets.

###

This study was supported by the Ministry of Economy, Industry and Competitiveness (MINECO) through ERDFs "A way to build Europe" and "la Caixa" Foundation PhD programme, that supports Lada Murcia PhD student.

Reference article:

Mariana Muzzopappa, Lada Murcia and Marco Milán

Feedback amplification loop drives malignant growth in epithelial tissues

PNAS (2017): doi: 10.1073/pnas.1701791114

Media Contact

Sònia Armengou
[email protected]
34-934-037-255

http://www.irbbarcelona.org

Original Source

https://www.irbbarcelona.org/en/news/internal-mechanism-found-to-be-responsible-for-the-limitless-growth-potential-of-epithelial

Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Nursing Handover in Kenyan Newborn Units

October 28, 2025
blank

Peak Rush Hour and Lack of Dedicated Infrastructure Contribute to Increase in Cycling Near Misses in London

October 28, 2025

Study Finds Connection Between Outdoor Air Pollution and Increased Breast Cancer Risk

October 28, 2025

Thiophene-Doped Fully Conjugated Covalent Organic Frameworks Boost Photocatalytic Hydrogen Peroxide Production Efficiency

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Nursing Handover in Kenyan Newborn Units

Peak Rush Hour and Lack of Dedicated Infrastructure Contribute to Increase in Cycling Near Misses in London

Study Finds Connection Between Outdoor Air Pollution and Increased Breast Cancer Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.