• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Insect wings shred bacteria to pieces

Bioengineer by Bioengineer
October 29, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
 
The clanger cicada (Psaltoda claripennis) is a locust-like insect whose wings are covered by a vast hexagonal array of 'nanopillars' — blunted spikes on a similar size scale to bacteria . When a bacterium settles on the wing surface, its cellular membrane sticks to the surface of the nanopillars and stretches into the crevices between them, where it experiences the most strain. If the membrane is soft enough, it ruptures (see video, bottom).
 
Lead study author Elena Ivanova of Australia's Swinburne University of Technology in Hawthorne, Victoria, says that she was surprised that the bacterial cells are not actually punctured by the nanopillars. The rupturing effect is more like “the stretching of an elastic sheet of some kind, such as a latex glove. If you take hold of a piece of latex in both hands and slowly stretch it, it will become thinner at the centre, [and] will begin to tear,” she explains.
 
To test their model, Ivanova and her team irradiated bacteria with microwaves to generate cells that had different levels of membrane rigidity. Their hypothesis was that the more rigid bacteria would be less likely to rupture between the nanopillars. The results validated the model, but also demonstrated that the cicada’s nanopillar defence is limited to bacteria that have sufficiently soft membranes.
 
Further study of the cicada’s wing is needed before its physical-defence properties can be mimicked in man-made materials. Anne-Marie Kietzig, a chemical engineer at McGill University in Montreal, Canada, who was not involved in the study, suggests that materials based on this model could one day be applied to public surfaces that commonly harbour disease, such as bus railings. “This would provide a passive bacteria-killing surface,” she says, adding that it “does not require active agents like detergents, which are often environmentally harmful”.
 
Story Source:
 
The above story is reprinted from materials provided by NAture News. The original article was written by Trevor Quirk.  
 
 
 
 
Share12Tweet8Share2ShareShareShare2

Related Posts

Seismic Analysis of Masonry Facades via Imaging

Seismic Analysis of Masonry Facades via Imaging

August 16, 2025
Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

August 16, 2025

Genkwanin Glycosides Boost Glucose Uptake in Fat

August 16, 2025

Real-Time Water Monitoring in Aqueducts via Acoustic Sensing

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.