• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Innovative tissue analysis: Pioneering controllable histotomy with magnetic microneedle array robots

by
July 31, 2024
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a pioneering development for the biomedical field, a research team led by Yuanjin Zhao from Nanjing Drum Tower Hospital, China, has published a research article in Engineering. The article, titled “Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots,” introduces a novel technique for tissue slicing and cultivation that could revolutionize the way primary tissues are handled in clinical settings.

Schematic illustration of tumor tissue slicing, manipulation, and cultivation for high-throughput drug screening.

Credit: Xiaoxuan Zhang et al.

In a pioneering development for the biomedical field, a research team led by Yuanjin Zhao from Nanjing Drum Tower Hospital, China, has published a research article in Engineering. The article, titled “Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots,” introduces a novel technique for tissue slicing and cultivation that could revolutionize the way primary tissues are handled in clinical settings.

The in vitro cultivation of patient-derived tissues is crucial for accurate diagnosis, precision medication, individualized therapy, and tissue engineering. However, current tissue slicing and cultivation techniques often fall short of clinical requirements. The research team’s innovative approach addresses these challenges by introducing a controllable histotomy strategy that utilizes hierarchical magnetic microneedle array robots.

This strategy involves a three-dimensionally printed, mortise-tenon-structured slicing device, coupled with a magnetic-particle-loaded and pagoda-shaped microneedle array scaffold. The multilayered structure of the microneedles allows for the effective fixation of tissue specimens, avoiding tissue slipping during the slicing process. Moreover, the encapsulated magnetic microneedle fragments enable the tissue pieces to act as magnetically responsive biohybrid microrobots, facilitating their separation, transportation, and dynamic culture through magnetic fields.

The team demonstrated the technique’s efficacy by tailoring primary pancreatic cancer tissues into tiny pieces and culturing them in multilayered microfluidic chips for high-throughput drug screening. The results indicate the promising future of this technique in clinical settings, offering a significant step forward in the precision medicine landscape.

“The development of this controllable histotomy technique marks a significant advancement in the field of tissue engineering and drug screening,” said Jiaming Wu, the editor of Engineering. “By leveraging the capabilities of magnetic microneedle array robots, researchers have been able to create a more efficient and precise method for tissue manipulation and analysis.”

The research article also discusses the potential for further improvements to the technique, such as automating the horizontal sectioning and production of tissue cubes, and scaling up the microtomy device for higher throughput. Additionally, the team envisions the application of this technology beyond cancer research, to other types of patient-derived primary tissues, and its potential for long-term tissue cultivation and observation.

The innovative work by Yuanjin Zhao’s team not only pushes the boundaries of current tissue analysis techniques but also opens up new possibilities for personalized medicine and the development of more effective treatments. As the technology matures, it is expected to play a pivotal role in the advancement of biomedical research and clinical applications.

The paper “Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots,” authored by Xiaoxuan Zhang, Hanxu Chen, Taiyu Song, Jinglin Wang, Yuanjin Zhao. Full text of the open access paper: https://doi.org/10.1016/j.eng.2024.05.004. For more information about the Engineering, follow us on X (https://twitter.com/EngineeringJrnl) & like us on Facebook (https://www.facebook.com/EngineeringJrnl).



Journal

Engineering

DOI

10.1016/j.eng.2024.05.004

Article Title

Controllable Histotomy Based on Hierarchical Magnetic Microneedle Array Robots

Article Publication Date

21-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

BindCraft Enables One-Shot Functional Protein Binders

August 28, 2025

Assessing NIPAM Gel Sensitivity in CyberKnife Dosimetry

August 28, 2025

Lipid Timing: Impact on Menopausal Symptoms Explored

August 28, 2025

Weight Loss Results with Semaglutide in WeGoTogether

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BindCraft Enables One-Shot Functional Protein Binders

Assessing NIPAM Gel Sensitivity in CyberKnife Dosimetry

Colorectal Cancer Burden in Childbearing Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.