• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Innovative technique greatly increases sensitivity of DNA sequencing

Bioengineer by Bioengineer
March 9, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Toronto (March 9, 2017) – OICR researchers, together with international collaborators, have invented a technique to avoid a major problem with common laboratory techniques and improve the sensitivity of important cancer tests.

The findings, recently published in the journal Nature Protocols, describe a process by which the sensitivity of DNA sequencing can be improved. The technology, called SiMSen-Seq, could aid in detecting the recurrence of cancers, catching possible disease relapses faster than current methods and improving patient outcomes.

To sequence DNA, scientists often use a technique called polymerase chain reaction (PCR) to increase the amount of DNA available from a sample. However, PCR can introduce mistakes that can limit researchers' ability to detect real mutations in the original DNA molecules. To track the original molecules in a sample, molecular tags called DNA barcodes are added. This technique is essential for sensitive detection of mutations but can lead to other errors, as components of the tags can interfere with each other and affect the final results.

"We created a DNA barcode with a hairpin structure that opens up to be read when heated and contracts when cooled. This allows us to 'hide' the barcode and analyze more patient DNA fragments in a single reaction," said Dr. Paul Krzyzanowski, Program Manager of OICR's Genome Technologies Program. Krzyzanowski led the development of analysis pipeline software used in SiMSen-Seq. This software flags errors in sequencing results and corrects them computationally.

Current genome sequencing technologies return results with error rates of about one per cent, meaning that for researchers to be certain that a mutation exists it has to be detected in a sample at a rate of greater than one per cent. SimSen-Seq technology has lowered this error rate 100-fold, meaning that the recurrence of cancers could be detected at lower levels and earlier than before, allowing patients to receive additional treatment sooner.

The team has patented their technique, and while it can conceivably be performed in any molecular biology lab, the group also hopes to make their expertise in using the method available to the research community. "Our paper describes how this process can be carried out, but we think that our experience in using the technique could be leveraged by other research groups and save them the trial and error of instituting a new process," said Krzyzanowski. Those interested in accessing this service can do so through OICR's Collaborative Research Resources directory.

"Ontario is pleased to support this collaborative research project through the Ontario Institute for Cancer Research," said Reza Moridi, Ontario's Minister of Research, Innovation and Science. "This innovative technique that increases the sensitivity of DNA sequencing is a remarkable breakthrough and one that could improve patient outcomes in Ontario and around the world by detecting the reoccurrence of cancers earlier."

###

About the Ontario Institute for Cancer Research

OICR is an innovative cancer research and development institute dedicated to prevention, early detection, diagnosis and treatment of cancer. The Institute is an independent, not-for-profit corporation, supported by the Government of Ontario. OICR's research supports more than 1,700 investigators, clinician scientists, research staff and trainees located at its headquarters and in research institutes and academia across the Province of Ontario. OICR has key research efforts underway in small molecules, biologics, stem cells, imaging, genomics, informatics and bio-computing. For more information, please visit the website at http://www.oicr.on.ca.

For more information, please contact:

Hal Costie
Senior Communications Officer
Ontario Institute for Cancer Research
647-260-7921
[email protected]
@OICR_news

Media Contact

Hal Costie
[email protected]
647-260-7921

Homepage

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

September 21, 2025

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.