• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Innate immune adaptor TRIF confers neuroprotection in ALS

Bioengineer by Bioengineer
April 16, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Koji Yamanaka

Nagoya, Japan – Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease damaging motor neurons in brain and spinal cords. ALS patients show progressive muscle weakness and atrophy, leading to a fatal respiratory muscle paralysis. There are no effective therapies for ALS.

There are compelling evidence that glial and immune cells contribute to the progression of neurodegenerative diseases including ALS. The adaptive immune response has been implicated in disease processes of ALS, but it remains unknown if innate immune signaling also contributes to ALS progression.

Now, the research group led by Professor Koji Yamanaka at Nagoya University revealed that deficiency of the innate immune adaptor TRIF, which is essential for certain Toll-like receptor (TLR) signaling cascades, significantly shortened survival time of ALS mice.

To test the role of innate immune response in the mouse model of ALS, the researchers focused on Toll-like receptors (TLR), which are important sensors for innate immunity. TLR signaling requires TRIF and MyD88, two critical adaptor proteins for transmitting signals. "We found that ablation of TRIF significantly shortens survival time of ALS mice," says Okiru Komine, first author of the study. "While MyD88 is also a crucial adaptor for most TLR signaling pathways, MyD88 deficiency had no impact on disease course."

In addition, they found that aberrantly activated astrocytes were accumulated in the lesions of TRIF-deficient ALS mice. Astrocytes, one type of glial cells are the supporting cells for survival and function of neurons in the brain by secreting many kinds of neuroprotective molecules. However, in the lesion of ALS, astrocytes change their shapes and some of them are abnormally activated to secrete the harmful molecules to the neurons.

These aberrantly activated astrocytes overproduced toxic reactive oxygens. Researchers found TRIF signaling is able to eliminate these aberrantly activated astrocytes by apoptosis, a suicide program of the cells. In the absence of TRIF, these astrocytes were accumulated. Moreover, the number of aberrantly activated astrocytes was negatively correlated with survival time of ALS mice, suggesting that these astrocytes are toxic to the motor neurons.

"These results revealed for the first time that the TRIF pathway is involved in eliminating aberrantly activated astrocytes to maintain the microenvironment surrounding motor neurons in ALS mice," Yamanaka says. "The current study reveals the new roles of innate immunity in ALS pathomechanism and provides a clue to develop a new therapeutic approach for protecting ALS motor neurons."

###

The article, "Innate immune adaptor TRIF deficiency accelerates disease progression of ALS mice with accumulation of aberrantly activated astrocytes", was published in Cell Death & Differentiation, at DOI:10.1038/s41418-018-0098-3.

Media Contact

Koomi Sung
[email protected]
@NU__Research

http://www.nagoya-u.ac.jp/en/

Original Source

http://en.nagoya-u.ac.jp/research/activities/news/2018/04/innate-immune-adaptor-trif-confers-neuroprotection-in-als-mice-by-eliminating-abnormal-glial-cells.html http://dx.doi.org/10.1038/s41418-018-0098-3

Share12Tweet8Share2ShareShareShare2

Related Posts

PD-L1 Enhances c-MET Resistance to Osimertinib in NSCLC

October 9, 2025

Stem Cell Therapy for Ischemic Stroke: Trials and MRI Advances

October 9, 2025

Innovative Therapy Boosts Upper Limb Rehab in Children

October 9, 2025

Exploring Long Covid: Voices from an Online Community

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1150 shares
    Share 459 Tweet 287
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PD-L1 Enhances c-MET Resistance to Osimertinib in NSCLC

Stem Cell Therapy for Ischemic Stroke: Trials and MRI Advances

Evaluating Childhood Interventions to Combat Obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.