• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Injectable plant-based nanoparticles delay tumor progression

Bioengineer by Bioengineer
June 28, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Case Western Reserve University School of Medicine in collaboration with researchers from Dartmouth Geisel School of Medicine and RWTH Aachen University (Germany) have adapted virus particles–that normally infect potatoes–to serve as cancer drug delivery devices for mice. But in a recent article published in Nano Letters, the team showed injecting the virus particles alongside chemotherapy drugs, instead of packing the drugs inside, may provide an even more potent benefit.

The researchers discovered injecting potato virus particles into melanoma tumor sites activates an anti-tumor immune system response. And simultaneously injecting the nanoscale plant virus particles and a chemotherapy drug–doxorubicin–into tumor sites further helps halt tumor progression in mice. But surprisingly, when the researchers created and injected combination nanoparticles, where the chemo drug is physically attached to the virus particles, there was not a significant added benefit.

The results are the first to show "vaccinating" mice with potato virus nanoparticles at a cancer site can generate an anti-tumor response. But the results also suggest more complex nanoparticles may not correspond to added therapeutic benefit.

"It's attractive to want to create multifunctional nanoparticles that can 'do it all,'" said Nicole F. Steinmetz, PhD, senior author on the study, George J. Picha Professor in Biomaterials, member of the Case Comprehensive Cancer Center, and Director of the Center for Bio-Nanotechnology at Case Western Reserve School of Medicine. "But this study shows significant therapeutic efficacy, including prolonging survival, requires a more step-wise approach. When the plant-based virus particles and the drugs were able to work on their own, we saw the greatest benefit."

Wrote the authors, "While the nanomedicine field strives to design multifunctional nanoparticles that integrate several functions and therapeutic regimens into single nanoparticle – our data suggest a paradigm shift; some therapeutics may need to be administered separately to synergize and achieve most potent therapeutic outcome."

Steinmetz and her team will next investigate mechanisms behind the potato virus particles' anti-tumor effects. She plans to test whether co-administering the nanoparticles with different chemotherapy drugs can delay, or slow the progression of other cancers. Said Steinmetz, "Dual-pronged therapeutic approaches may be our best defense against certain cancers. And, virus-based nanoparticles like the ones in our study may be used to enhance efficacy of existing medications."

###

This work was funded in part by a Research Scholar Award from the American Cancer Society (128319-RSG-15-144-01-CDD to N.F.S.), training grants from the National Institutes of Health (R25 CA148052 to K.L.L., T32 EB007509 to K.L.L., T32 GM007250 to A.A.M., TL1 TR000441 to A.A.M.), and a Case Western Reserve University (CWRU) Council to Advance Human Health (CAHH) Award (to N.F.S.).

For more information about Case Western Reserve University School of Medicine, please visit: http://case.edu/medicine.

Media Contact

Marc Kaplan
[email protected]
216-368-4692
@cwru

http://www.case.edu

http://casemed.case.edu/cwrumed360/news-releases/release.cfm?news_id=668

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.7b00107

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Small Molecule Activates Autophagy to Inhibit Lung Tumors

November 15, 2025

Unlocking Tomorrow: The Future of Molecular Cell Biology

November 15, 2025

Gut Fungus Clavispora eases colitis via Indole-3-ethanol

November 15, 2025

Advances in Priapism Mechanisms and Treatments

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lung Cancer Links to COVID-19 Risk Explored

Nosema Parasite Diversity in Turkish Honeybees Explored

Small Molecule Activates Autophagy to Inhibit Lung Tumors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.