• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Inhibitory neurons have two types of impact on brain oscillations

Bioengineer by Bioengineer
May 28, 2019
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A certain type of neuron, called inhibitory neurons, can have two types of overall effect on oscillations in the brain

Studying the brain involves measuring the activity of billions of individual brain cells called neurons. Consequently, many brain measurement techniques produce data that is averaged to reflect the activity of large populations of these neurons. If all of the neurons are behaving differently, this will average out. But, when the behaviour of individual neurons is synchronized, it produces clearly visible oscillations.

Synchronisation is important to understanding how neurons behave, which is particularly relevant with regard to brain diseases like Alzheimer’s, epilepsy and Parkinson’s. Now, a group of researchers from the Institute of Computational Physics and Complex Systems at Lanzhou University, China, has used a combination of two computer models to study the ways different kinds of neurons can impact synchronisation. The study is published in the European Physical Journal B.

To study the effects on synchronisation, the authors examined neurons called inhibitory neurons – which work to slow down or stop the activity of other neurons. Moreover, they explored the likelihood of these inhibitory neurons firing either spontaneously or not at all within the network.

Using computer models, the researchers then constructed an Izhikevich neural network; they also employed a model of neuronal transmission, called the Tsodyks-Uziel-Markram (TUM) model.

Their findings indicate that inhibitory neurons can have a two-fold impact on oscillatory patterns. On the one hand, they can delay the firing of the neurons, which prevents synchronisation from happening. On the other, they can facilitate the transition of the oscillatory patterns, which is conducive to synchronisation.

The research is important for increasing our understanding of brain diseases, like stroke, Alzheimer’s and epilepsy. “The ever-increasing morbidity of brain diseases makes the investigation on this topic significant in both psychology and medicine” the authors say.

###

References

Peng-Xiang Lin, Chong-Yang Wang and Zhi-Xi Wu (2019), Two-fold effects of inhibitory neurons on the onset of synchronization in Izhikevich neuronal networks, European Physical Journal B 92:113, DOI: 10.1140/epjb/e2019-100009-2

Contact

Sabine Lehr

Springer Physics Editorial

Tel: +49-6221-4487-8336

Email: [email protected]

Media Contact
Sabine Lehr
[email protected]
http://dx.doi.org/10.1140/epjb/e2019-100009-2

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials Sciencesneurobiology
Share12Tweet7Share2ShareShareShare1

Related Posts

Oligomeric Alpha-Synuclein Triggers Early Corticostriatal Dysfunction

Oligomeric Alpha-Synuclein Triggers Early Corticostriatal Dysfunction

July 30, 2025
Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

July 30, 2025

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oligomeric Alpha-Synuclein Triggers Early Corticostriatal Dysfunction

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Processing Environments Shape Food-Related Antibiotic Resistome

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.