• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ingestible drug-delivery materials may help patients comply with treatment regimens

Bioengineer by Bioengineer
July 25, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CAMBRIDGE, MA — Around half of all medications for chronic diseases are not taken as prescribed, costing the U.S. health care system more than $100 billion in avoidable hospital stays each year.

This noncompliance is even more significant in the developing world, where health care budgets are chronically overstretched and patients treated for diseases such as malaria must take multiple drugs with complex dose regimens.

To help ensure patients receive their full course of treatment, researchers at MIT and Brigham and Women's Hospital have developed a new set of drug delivery materials, which can reside in the stomach for up to nine days, slowly releasing their dosage of medication.

The materials, which the researchers describe in a paper published today in the journal Nature Communications, are known as triggerable tough hydrogels (TTH), according to Robert Langer, the David H. Koch Institute Professor at MIT and a member of MIT's Koch Institute for Integrative Cancer Research.

"One of the biggest issues in health care is noncompliance, people simply not taking their drugs," says Langer, who is one of the paper's senior co-authors. "We have been working with the Bill and Melinda Gates Foundation to develop ultra-long-lasting capsules, which might last for the entire course of a treatment, or could be taken once a week or once a month, depending on the device."

Developing a capsule that does not rapidly pass through the body, but can instead reside in the gastrointestinal (GI) tract for long periods of time, is no easy task, since any material must be able to withstand the considerable compressive forces in the stomach.

Any such device must also be small enough to be swallowed comfortably but large enough to avoid being passed out of the stomach and into the intestines through a region known as the pylorus, says Giovanni Traverso, a research affiliate at the Koch Institute, a gastroenterologist and biomedical engineer at Brigham and Women's Hospital, and the paper's co-senior author.

What's more, it must be possible to trigger the device to self-destruct, in the event of an allergic reaction to, or unwelcome side effects from, the gel or the drug being delivered.

To this end, the researchers began investigating the use of hydrogels, polymer gels that have a high water content, giving them the capacity to swell when hydrated.

Capsules made from the hydrogel in a dehydrated state could be swallowed by the patient; they would then swell on entering the stomach, to prevent them passing through the pylorus.

However, hydrogels, which are typically formed from a single network of crosslinked polymer chains, tend to be quite soft, and they do not have the strength to withstand compressive forces.

So the researchers instead used two intertwined polymer networks, to build a stronger, more resilient material. "There are two networks. One is composed of alginate, a material derived from seaweed, and the other is polyacrylamide, a widely-used polymer," Traverso says.

Crosslinked within these intertwined networks are two types of chemical bond, which can be dissolved on demand using biocompatible trigger compounds.

The polyacrylamide network is crosslinked with disulphide bonds, which can be dissolved using the antioxidant glutathione. The alginate network, in contrast, is crosslinked with ionic bonds, which can be dissolved with a chemical known as EDTA (Ethylenediaminetetraacetic acid), which is used as a preservative in some foods and as a treatment for mercury and lead poisoning.

In this way, if the capsule device needs to be removed from the stomach in a hurry, the patient can simply swallow the antidote compounds, triggering the material to break apart and allowing it to safely pass through the body.

When the researchers tested the mechanical strength of the materials, they found they were robust enough to resist fracture, even under pressure from a razor blade.

They then tested devices built from the materials in large animal models, where they found they were able to withstand the forces within the stomach for more than seven days, according to the paper's lead author Jinyao Liu, an MIT postdoc.

Finally, they tested the device's potential as a drug delivery system, by loading it with the antimalarial lumefantrine. They chose this drug as nonadherence to medication is a particular problem in treating cases of malaria in the developing world.

They found the device was able to release the lumefantrine in a controlled manner, over a period of days.

The researchers now plan to carry out further work on the rate of drug release from the capsules, and to investigate other applications for the materials, such as in weight loss intervention and tissue engineering.

###

Media Contact

Sarah McDonnell
[email protected]
617-253-8923
@MIT

http://web.mit.edu/newsoffice

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025
blank

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025

Drivers of Human-Gaur Conflict in Tamil Nadu

September 11, 2025

Korea University Study Uncovers Hidden Complexity Within Recurrent Brain Tumors

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

Antenatal Origins and Treatments of Neurodevelopment in CHD

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.