• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Incremental discovery may one day lead to photosynthetic breakthrough

Bioengineer by Bioengineer
June 29, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: N/A

Photosynthesis is one of the most complicated and important processes–responsible for kick-starting Earth's food chain. While we have modeled its more-than-100 major steps, scientists are still discovering the purpose of proteins that can be engineered to increase yield, as scientists recently proved in Science. Now researchers have uncovered secrets about another protein, CP12 — the full understanding of which may provide an additional route to boost yields in the future.

There are three forms of the protein CP12 that regulate the enzymes GAPDH and PRK. Think of the enzymes as the workhorses and CP12 as the groom holding the reins. CP12 tells them to get to work when there's light and reins them in when it's dark.

"CP12 is an important component because it helps plants respond to changing light levels, for example when the plant is shaded by a leaf or cloud," said first author Patricia Lopez, a postdoctoral researcher for Realizing Increased Photosynthetic Efficiency (RIPE) who led this research. "CP12 stops the activity of the enzymes within seconds but without CP12, it will take several minutes to slow the activity, costing the plant precious energy."

Published in the Journal of Experimental Botany, Lopez and co-authors found not all CP12 enzymes are created equal. Turns out that CP12-3 is not part of this process — whereas CP12-1 and CP12-2 are in charge and can cover for each other. Get rid of all three, and the plant can't photosynthesize efficiently, resulting in a drastically smaller plant with fewer, smaller seeds.

In fact, without CP12 to hold the reins, PRK also disappears. "PRK is a vital workhorse that provides the raw materials for the enzyme Rubisco to turn into carbohydrates — the sugars the plant uses to grow bigger and produce more yield," said lead author Christine Raines, a professor of plant molecular physiology at the University of Essex.

Agriculture is approaching the limits of the yield traits that drove the remarkable yield increases over the past century, said RIPE Associate Director Don Ort, USDA/ARS scientist and the Robert Emerson Professor of Plant Biology at the Carl R. Woese Institute for Genomic Biology. "Improving photosynthesis has the promise of being the next frontier to dramatic boost crop yields, and for the first time there is both a molecular understanding of photosynthesis and powerful technological tools to make engineering photosynthesis a realistic and attainable goal."

###

The paper "Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin-Benson cycle" is published by the Journal of Experimental Botany (DOI: 10.1093/jxb/erx084). Co-authors include Amani Omar Abuzaid and Tracy Lawson.

Realizing Increased Photosynthetic Efficiency (RIPE) is an international research project engineering plants to more efficiently turn the sun's energy into food to sustainably increase worldwide food productivity. The RIPE project is supported by the Bill and Melinda Gates Foundation.

The Carl R. Woese Institute for Genomic Biology advances life sciences research through interdisciplinary collaborations within a state-of-the-art genomic research facility at the University of Illinois.

Media Contact

Claire Benjamin
[email protected]
217-244-0941
@IGBIllinois

http://www.igb.uiuc.edu

Original Source

http://ripe.illinois.edu/news/incremental-discovery-may-one-day-lead-to-photosynthetic-breakthrough http://dx.doi.org/10.1093/jxb/erx084

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Pichia kluyveri Compounds Combat Cacao Pathogen Moniliophthora roreri

Pichia kluyveri Compounds Combat Cacao Pathogen Moniliophthora roreri

December 27, 2025
blank

Drought Stress: PHD Gene Expression in Alfalfa

December 26, 2025

Temperature and Heat Penetration in Canned vs. Pouched Whelk

December 26, 2025

Unveiling Genetic Factors Affecting Milk Fat in Holsteins

December 26, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sustainable Equatorial Forest Management: A Decision-Making Framework

Umbilical Cord Milking: Harvesting Cells for Regeneration

Insights on Dementia Care in Nursing Homes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.