• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Increasing safety for electric cars and pedestrians

Bioengineer by Bioengineer
December 11, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Michael Roan for Virginia Tech

An interdisciplinary research group at Virginia Tech is using an award of $550,000 to create a virtual environment to test safety measures for the interaction between electric vehicles (EVs) and pedestrians. The award is an 18-month project funded by the Safety through Disruption (Safe-D) University Transportation Center.

EVs brought a significant change to the automotive world when Toyota started mass production of the Prius hybrid in 1997. The Prius engine and many like it introduced a combination of both gas and electric power. This gave the horsepower of gasoline when it was needed, engaging all-electric mode at other times to conserve fuel and reduce emissions.

All-electric mode has another notable difference when compared to an internal combustion engine: noise. While a gas engine announces itself from a distance, electric engines make almost no sound, and are easily drowned out by other ambient noise. Car noises are actually a critical safety measure, making the presence of a vehicle known when approaching pedestrian crosswalks and other areas where foot traffic might intersect with automobiles. This is particularly important for pedestrians with a visual impairment.

To solve this potential safety problem, manufacturers have been developing an acoustic vehicle alerting system (AVAS) for use in new electric and hybrid electric vehicles. These systems make a continuous noise when the car is moving slowly, its loudness between that of a normal conversation and that of a garbage disposal.

Legislation has been moving forward to require these safety measures on EVs, with the most prominent examples coming from the United States and the United Nations Economic Commission for Europe. While the law creates a range of decibel levels, there are many approaches for the type of sound that might best be put into use. Early choices included such options as spaceships and choirs.

The Virginia Tech project will bring legislation together with practical implementation and testing. Taking lead on the project is mechanical engineering professor Michael Roan of the Acoustics, Signal Processing, and Immersive Reality (ASPIRe) Lab. He is joined by Luke Neurauter of the Virginia Tech Transportation Institute and General Motors Engineer Doug Moore.

Roan has worked with General Motors on two previous projects to test the use of various sounds for both legally blind and sighted pedestrians. These projects illuminated the need for additional work in two main areas: First, systems are needed that uniformly broadcast sounds around the front of the vehicle, and second, better understanding is needed to develop warning sounds that are highly detectable, but contribute little to noise pollution.

The group will be testing in the a 3D virtual acoustic environment of Roan’s ASPIRe lab. This will enable the use of a 58.2 high density loudspeaker array and a high-resolution wavefield synthesis system, where the researchers will create an immersive virtual sound environment of street noises and alert sounds. Conducting the tests in this simulated environment will greatly reduce costs while increasing test repeatability and accuracy. Additionally, the virtual acoustic environment will provide car makers with the ability to test detectability performance of their EV sounds in a large number of background noise environments.

“This could greatly advance the development of AVAS,” said Roan. “Being able to quickly recreate a wide array of sound environments means a plentiful amount of data for the effectiveness of alerts, and we are excited to be part of this critical technology development.”

###

Media Contact
Suzanne Irby
[email protected]

Original Source

https://vtnews.vt.edu/articles/2020/11/me2020-roan-virtualsafety.html?

Tags: Technology/Engineering/Computer ScienceVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

Smart Virtual Screening for JAK3 Covalent Inhibitors

August 26, 2025

Educating on Inequality Boosts Women in Biomedical Engineering

August 26, 2025

Exploring Stakeholder Engagement in Indian Healthcare Research

August 26, 2025

Unveiling Microplastics: New Insights in Biology

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smart Virtual Screening for JAK3 Covalent Inhibitors

Educating on Inequality Boosts Women in Biomedical Engineering

Exploring Stakeholder Engagement in Indian Healthcare Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.