• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

In the treetops: USU ecologist studies canopy soil abundance, chemistry

Bioengineer by Bioengineer
August 4, 2023
in Chemistry
Reading Time: 4 mins read
0
USU Ecologist Jessica Murray in Costa Rican Tree Canopy
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LOGAN, UTAH, USA – When we think of soil, most of us think of dirt on the ground. But a surprising amount of the planet’s soil thrives in the treetops of old-growth forests, high above terra firma.

USU Ecologist Jessica Murray in Costa Rican Tree Canopy

Credit: Mario Molina

LOGAN, UTAH, USA – When we think of soil, most of us think of dirt on the ground. But a surprising amount of the planet’s soil thrives in the treetops of old-growth forests, high above terra firma.

This organic matter, composed of decaying leaves and branches, airborne particulates and moisture, is called canopy soil or arboreal soil. Its study is relatively new, says Utah State University ecologist Jessica Murray. She’s among researchers unraveling mysteries of the dense, mossy humus that provides rich habitat for insects, birds, fungi, worms and plants, as well as a generous reservoir for carbon storage.

Murray and colleagues from Texas A&M University, the University of Toronto Scarborough and Imperial College London published new information about the enigmatic resource in the July 27, 2023, online edition of Geoderma. The team’s research was supported by USU, the U.S. Department of Agriculture National Institute of Food and Agriculture, and the Natural Sciences and Engineering Research Council of Canada.

“In this study, we sought to understand where canopy soils are found, where they are most abundant, and if their properties – and thus, soil development processes – differ as a function of climate or other small-scale factors,” says Murray, a doctoral student in USU’s Department of Biology and Ecology Center. “This is the first study to look at the distribution patterns of canopy soils across forests and one of very few studies that have sought to examine canopy soil properties.”

Murray collected much of the data for the study some 80 feet above the ground at six primary forest sites across Costa Rica’s Cordillera de Tilarán and Cordillera Volcánica Central, encompassing both Caribbean and Pacific slope mountain ranges. Her field gear includes climbing gear, ropes, a safety harness and helmet.

“I climbed about 30 trees to collect data,” she says. “And getting to one of those sites was the hardest hike of my life.”

Murray is referring to a site designated “Puesto 1070,” located along a contiguous tract of primary forest, which required a steep trek from about 1,970 feet in elevation to 3,608 – in thick mud.

“It took eight hours to complete the hike just to the study site,” she says. “We were carrying all of our climbing gear, food for eight days, sleeping bags and sampling equipment. Thank heavens we finished that site early, because, with our hard-earned appetites, we also nearly finished our food supply ahead of schedule.”

Murray says tree canopies in the tropical montane forest systems are especially dense, with thick moss, soil and an abundance of epiphytes – plants that grow on other plants – often referred to as “air plants” – that are not parasitic and have little or no attachment to other obvious nutrient sources.

“It’s like another world in the air – canopies teeming with plant, insect and animal life,” she says. “I initially conducted surveys to assess canopy soil abundance from the ground with binoculars. But it was really necessary to climb up into the trees to get an accurate picture of what was going on.”

Murray asserts forest canopies store much more carbon that generally assumed.

“It’s kind of a back-of-the-envelope calculation on my part, but one I’m ready to defend and eager to investigate further,” she says. “I think canopy soil stores 0.4 to 4 percent of total soil carbon in the forests where it is found, which is not being counted in ecosystem carbon budgets.”

Mentored by USU Biology Professor John Stark and former USU faculty member Bonnie Waring, the latter now with Imperial College London and an author on the paper, Murray says the team’s results indicate both climate and tree size play an important role in canopy soil abundance, carbon stocks and chemistry.

“Climate, particularly fog and temperature changes, appear to drive canopy soil abundance across forests, while tree size determines canopy soil abundance within a forest,” she says. “Our findings reveal canopy soil’s vulnerability to climate change, and its decline, could cause a significant decrease in carbon storage resources.”  

Further, she says, those resources could take longer than expected to restore.

“When we talk about reforestation, we don’t stop to consider the time needed for forest regrowth plus canopy mat regrowth,” Murray says. “It may take decades longer for recovered forests destroyed by wildfire or development to regenerate robust canopy soil mats.”

A 2022 recipient of the Ecological Society of America’s Katherine S. McCarter Graduate Student Policy Award, Murray is among a number of Aggies presenting at the ESA’s 2023 Annual Meeting Aug. 6-11, in Portland, Oregon. She presents the talk, “The Persistence of Metabolically Protected vs. Mineral-Associated Soil Organic Carbon in the Presence of Organic Inputs,” Thursday, Aug. 10, at 4:45 p.m., in Room B115 of the Oregon Convention Center.

“For that meeting, I’ll be presenting on research different from, but related to, the study published in Geoderma, including work about the basic mechanisms of soil carbon sequestration that uses canopy soils from my sites in Costa Rica,” she says.



Journal

Geoderma

DOI

10.1016/j.geoderma.2023.116609

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Climate, as well as branch-level processes, drive canopy soil abundance and chemistry

Article Publication Date

27-Jul-2023

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unlocking Civet Coffee: The Science Behind Its Unique Chemistry

October 23, 2025
Forests Reclaim Nutrients from Acid Rain-Damaged Rocks, Reducing Stream Acidity but Increasing Soil Sensitivity

Forests Reclaim Nutrients from Acid Rain-Damaged Rocks, Reducing Stream Acidity but Increasing Soil Sensitivity

October 23, 2025

NIH Grant Fuels Development of Advanced Computational Tools to Explore Fat Metabolism and Disease

October 23, 2025

Supersolid Spins Synchronize in Unison

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    163 shares
    Share 65 Tweet 41
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Civet Coffee: The Science Behind Its Unique Chemistry

Revolutionary Discovery Challenges Six Decades of Understanding in Fat Metabolism and Obesity

Advanced Additive Manufacturing Techniques Enable Precision Control of Heterostructures

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.