• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

In the ocean’s twilight zone, tiny organisms may have giant effect on Earth’s carbon cycle

Bioengineer by Bioengineer
July 18, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Mike Stukel

TALLAHASSEE, Fla. — Deep in the ocean's twilight zone, swarms of ravenous single-celled organisms may be altering Earth's carbon cycle in ways scientists never expected, according to a new study from Florida State University researchers.

In the area 100 to 1,000 meters below the ocean's surface — dubbed the twilight zone because of its largely impenetrable darkness — scientists found that tiny organisms called phaeodarians are consuming sinking, carbon-rich particles before they settle on the seabed, where they would otherwise be stored and sequestered from the atmosphere for millennia.

This discovery, researchers suggest, could indicate the need for a re-evaluation of how carbon circulates throughout the ocean, and a new appraisal of the role these microorganisms might play in Earth's shifting climate.

The findings were published in the journal Limnology and Oceanography.

Lead researcher and FSU Assistant Professor of Oceanography Mike Stukel, who conducted the study with the California Current Ecosystem Long-Term Ecological Research program, investigates the biological pump — the process by which carbon is transported from the surface to the deep ocean.

"Carbon dioxide is constantly diffusing into the ocean from the atmosphere and back into the atmosphere from the ocean," Stukel said. "In the surface ocean, when phytoplankton do photosynthesis, they're taking up carbon dioxide. But phytoplankton only have lifespans of days to a week, so those phytoplankton are likely to die in the surface ocean — usually by getting eaten by small organisms like krill."

When krill and other zooplankton breathe, they release carbon dioxide back into the surface ocean, and eventually back into the atmosphere. Typically, carbon dioxide in the surface ocean and atmosphere remain balanced at a near equilibrium.

The only way the ocean experiences a net uptake of carbon dioxide from the atmosphere is if the organic carbon at the surface is transported to the deep ocean, usually in the form of sinking particles.

Particles can sink from the surface ocean for any number of reasons. Dead organisms, fecal matter or amalgamated packages of organic particles are all common vehicles for carbon transport. Diatoms, a type of abundant phytoplankton that perform roughly a quarter of the world's photosynthesis, produce glass-like silica shells that make them substantially denser than the water, causing them to quickly sink.

If these sinking particles were to reach the deep ocean unobstructed, their carbon would be withheld from the atmosphere for hundreds of years. But, as Stukel and his team found, that's not always the case.

Using an advanced camera system that allowed researchers to identify organisms as small as 500 microns (half the thickness of a dime), the team discovered a profusion of microorganisms — far more than they expected — in the crucial ocean twilight zone. Their major question: What were the roles of these organisms, and phaeodarians specifically, in consuming sinking particles?

"By quantifying how many were there and then quantifying the proportion of particles they would be intercepting, we were able to calculate that they could be consuming as much as about 20 percent of the particles sinking out of the surface layer," Stukel said. "And this was just for one particular family of phaeodarians, called aulosphaeridae."

When sinking particles are consumed, those particles are necessarily prevented from reaching the deep ocean. The notion that one group of microorganisms could be consuming 20 percent of the carbon-rich particles sinking from the surface waters of this limited study area, Stukel said, suggests that microorganisms around the world could be playing a far more outsized role in the carbon cycle than scientists previously believed.

While at some points aulosphaeridae would be so abundant as to consume up to 30 percent of sinking particles, other times the organisms were barely present at all. Better understanding this variability in abundance of aulosphaeridae and similar organisms can help researchers like Stukel more accurately predict how the biological pump might evolve in the future.

"Our ability to understand how these things will change is important in understanding how the global carbon cycle is going to shift," Stukel said. "We need to learn what's going on in the rest of the world, and we need to know what causes these huge changes from when these organisms are a really dominant player to when they're a marginal player."

###

Tristan Biard and Mark D. Ohman from the Scripps Institution of Oceanography at the University of California, San Diego also contributed to this research, along with Jeffrey Krause from the Dauphin Island Sea Lab and the University of South Alabama. The study was funded by the National Science Foundation.

Media Contact

Zack Boehm
[email protected]
850-645-1504
@floridastate

http://www.fsu.edu

Original Source

http://news.fsu.edu/news/science-technology/2018/07/18/in-the-oceans-twilight-zone-tiny-organisms-may-have-giant-effect-on-earths-carbo-cycle/ http://dx.doi.org/10.1002/lno.10961

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

How Different ALK Fusion Variants Impact Lung Cancer Treatment Success

September 23, 2025
Tracking Motor Skills Across the Lifespan: Using Percentile Reference Curves in Practice

Tracking Motor Skills Across the Lifespan: Using Percentile Reference Curves in Practice

September 23, 2025

Chinese Scientists Uncover Neural Mechanisms Regulating Energy Expenditure in the Arcuate Hypothalamus

September 23, 2025

Revolutionizing Camel Husbandry with ICT Monitoring System

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Microtia Treatment: Advances in Tissue Engineering

Cornelis (Cees) Dekker Honored with 2026 Kazuhiko Kinosita Award in Single-Molecule Biophysics

Nuria Assa-Munt Honored with 2026 Rosalba Kampman Distinguished Service Award

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.