• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

In our genes—new DNA-based chip can be programmed to solve complex math problems

Bioengineer by Bioengineer
September 15, 2021
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The term ‘DNA’ immediately calls to mind the double-stranded helix that contains all our genetic information. But the individual units of its two strands are pairs of molecules bonded with each other in a selective, complementary fashion. Turns out, one can take advantage of this pairing property to perform complex mathematical calculations, and this forms the basis of DNA computing.

Programmable DNA-Based Boolean Logic Microfluidic Processing Unit

Credit: Gerd Altmann from Pixabay

The term ‘DNA’ immediately calls to mind the double-stranded helix that contains all our genetic information. But the individual units of its two strands are pairs of molecules bonded with each other in a selective, complementary fashion. Turns out, one can take advantage of this pairing property to perform complex mathematical calculations, and this forms the basis of DNA computing.

Since DNA has only two strands, performing even a simple calculation requires multiple chemical reactions using different sets of DNA. In most existing research, the DNA for each reaction are added manually, one by one, into a single reaction tube, which makes the process very cumbersome. Microfluidic chips, which consist of narrow channels etched onto a material like plastic, offer a way to automate the process. But despite their promise, the use of microfluidic chips for DNA computing remains underexplored.

In a recent article—made available online in ACS Nano on 7 July 2021 and published in Volume 15 Issue 7 of the journal on 27 July 2021—a team of scientists from Incheon National University (INU), Korea, present a programmable DNA-based microfluidic chip that can be controlled by a personal computer to perform DNA calculations. “Our hope is that DNA-based CPUs will replace electronic CPUs in the future because they consume less power, which will help with global warming. DNA-based CPUs also provide a platform for complex calculations like deep learning solutions and mathematical modelling,” says Dr. Youngjun Song from INU, who led the study.

Dr. Song and team used 3D printing to fabricate their microfluidic chip, which can execute Boolean logic, one of the fundamental logics of computer programming. Boolean logic is a type of true-or-false logic that compares inputs and returns a value of ‘true’ or ‘false’ depending on the type of operation, or ‘logic gate,’ used. The logic gate in this experiment consisted of a single-stranded DNA template. Different single-stranded DNA were then used as inputs. If part of an input DNA had a complementary Watson-Crick sequence to the template DNA, it paired to form double-stranded DNA. The output was considered true or false based on the size of the final DNA.

What makes the designed chip extraordinary is a motor-operated valve system that can be operated using a PC or smartphone. The chip and software set-up together form a microfluidic processing unit (MPU). Thanks to the valve system, the MPU could perform a series of reactions to execute a combination of logic operations in a rapid and convenient manner.

This unique valve system of the programmable DNA-based MPU paves the way for more complex cascades of reactions that can code for extended functions. “Future research will focus on a total DNA computing solution with DNA algorithms and DNA storage systems,” says Dr. Song.

With such a convincing proof of concept, it’s not hard to imagine DNA-based computers becoming everyday objects quite soon!

***

Reference

DOI: https://doi.org/10.1021/acsnano.1c02153

Authors: Wonjin Lee, Minsang Yu, Doyeon Lim, Taeseok Kang, and Youngjun Song

Affiliations: Incheon National University, Korea

About Incheon National University

Incheon National University (INU) is a comprehensive, student-focused university. It was founded in 1979 and given university status in 1988. One of the largest universities in South Korea, it houses nearly 14,000 students and 500 faculty members. In 2010, INU merged with Incheon City College to expand capacity and open more curricula. With its commitment to academic excellence and an unrelenting devotion to innovative research, INU offers its students real-world internship experiences. INU not only focuses on studying and learning but also strives to provide a supportive environment for students to follow their passion, grow, and, as their slogan says, be INspired.

Website: http://www.inu.ac.kr/mbshome/mbs/inuengl/index.html

About the author

Youngjun Song received his Ph.D. in Electrical Engineering from the University of California, San Diego in 2014. He is currently Assistant Professor at the Department of Nano-Bioengineering, Incheon National University. His research interests are Bio-electronic chips, DNA storage, and computer systems.



Journal

ACS Nano

DOI

10.1021/acsnano.1c02153

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Programmable DNA-Based Boolean Logic Microfluidic Processing Unit

Article Publication Date

27-Jul-2021

COI Statement

None

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polyions and Polyelectrolyte Complexes: Advancements for Brain Therapies

SLC4A11: Key Marker for Ovarian Cancer Treatment Response

Preparing Biomedical Engineers for an Evolving Future

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.