• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

In-mouse catalysis

Bioengineer by Bioengineer
February 17, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Address and deliver: A gold catalyst can be delivered to a target organ in a higher organism where it performs a chemical transformation visualized by bioimaging. This intriguing approach has been introduced by a Japanese team of scientists in the journal Angewandte Chemie. It could make organometallic catalysis applicable for therapy or diagnostics.

How is a therapeutically useful catalyst guided into its target tissue to synthesize bioactive molecules and drugs in higher level? How can its activity be visualized there? Noninvasive targeting for therapy, biological sensing, and imaging has become one of the most active biomedical research areas. Katsunori Tanaka and his colleagues at RIKEN, Waseda University, and JST-PRESTO (Japan) and Kazan Federal University (Russia) are especially interested in biocompatible metal complexes and, among them, gold catalysts to perform synthetic transformations in a target tissue. The challenge, however, is to bring the gold specifically to its target organ and to establish a visualization scheme to monitor the ongoing biochemical transformation.

Gold ions can be conjugated to a hydrophobic protein ligand, and this complex can be bound to albumin, an abundant water-soluble protein. The albumin is then furnished with sugar-type molecules, the glycans, which carry the chemical groups responsible for glycoalbumin accumulation in a target organ: "This work explores the adaptation and usage of organ-targeting glycans as biologically-compatible metal carriers," the scientists wrote. Thus the glycoalbumin can deliver the biocompatible metal catalyst, namely the gold complex. Intriguingly, this gold complex efficiently acts as an organometallic catalyst that can perform the reaction between biologically relevant molecules and organic substrates, which means it could be a relevant drug or diagnostic compound.

The scientists used the gold complex to bind a fluorescent dye to certain surface proteins present in the target tissue, which was either the liver or the intestine. To visualize the reaction, they performed fluorescent imaging of the whole living mouse. Within two hours after the injection of the catalyst and the substrate (the functionalized fluorescent dye) into the blood circuit, strong fluorescence in the two organs demonstrated successful in vivo gold catalysis. Thus, a catalytically active gold complex was sent and delivered to a target organ within a short time and without the laborious development of antibodies. As an outlook the scientists envisage biomedical applications, especially for metal catalysts with their unique reactivities: "Example therapies may include uncaging of active, cancer therapeutic enzymes selectively at tumor sites or […] reactions to produce active drug molecules at targeted organs," they wrote.

###

About the Author

Dr. Katsunori Tanaka is an Associate Chief Scientist in RIKEN, Japan. His research interests include developing synthetic methodologies, exploring in vivo glycan pattern recognition with its diagnostic and therapeutic application, and synthesizing bioactive molecules in living biological systems, which he named "therapeutic in vivo synthetic chemistry". He is the recipient of the Horace S. Isbell Award from ACS Division of Carbohydrate Chemistry.

http://www.riken.jp/nori-tanaka-lab/index.html

@angew_chem

Media Contact

Mario Mueller
[email protected]

http://www.wiley.com/wiley-blackwell

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

AI-Driven Marketing: Transforming Consumer Behavior Future

AI-Driven Marketing: Transforming Consumer Behavior Future

December 15, 2025

Cholesterol-Linked tRNA Small RNA Controls Heart Disease

December 15, 2025

Free-Living Amoebae Cases Found in Argentina

December 15, 2025

Aluminum-Doped BiFeO3 Nanoparticles Boost Supercapacitor Performance

December 15, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Driven Marketing: Transforming Consumer Behavior Future

Cholesterol-Linked tRNA Small RNA Controls Heart Disease

Free-Living Amoebae Cases Found in Argentina

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.