• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

In a break with dogma, myelin boosts neuron growth in spinal cord injuries

Bioengineer by Bioengineer
May 23, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UC San Diego Health

Recovery after severe spinal cord injury is notoriously fraught, with permanent paralysis often the result. In recent years, researchers have increasingly turned to stem cell-based therapies as a potential method for repairing and replacing damaged nerve cells. They have struggled, however, to overcome numerous innate barriers, including myelin, a mixture of insulating proteins and lipids that helps speed impulses through adult nerve fibers but also inhibits neuronal growth.

But in a new paper, published in the May 23 online issue of Science Translational Medicine, researchers at University of California San Diego School of Medicine report that adult rat myelin actually stimulated axonal outgrowth in rat neural precursor cells (NPCs) and human induced pluripotent (iPSC)-derived neural stem cells (NSCs).

"It's really a remarkable finding because myelin is known to be a potent inhibitor of adult axon regeneration," said Mark Tuszynski, MD, PhD, professor of neuroscience and director of the UC San Diego Translational Neuroscience Institute. "But that isn't the case with precursor neurons or those derived from stem cells."

Tuszynski's lab, with colleagues in Germany and Singapore, monitored neurite outgrowth from NPCs and NSCs growing on a myelin substrate in Petri dishes. Neurites are projections from the cell bodies of neurons, either axons (which carry signals outward to other neurons) or dendrites (which receive the signals). In both cases, they found outgrowth enhanced threefold.

In subsequent studies using rats with spinal cord injuries, the researchers found that rat NPCs and human iPSC-derived NSCs implanted at the injury site both extended greater numbers of axons through adult central nervous system white matter than through gray matter, and preferentially associated with rat host myelin.

Paring away some of the myelin molecules known to strongly inhibit axonal growth, Tuszynski and colleagues identified a molecule called reuronal growth regulator 1 or Negr1 as a potential mediator between axons and myelin, permitting the former's growth. Negr1 is involved in the process by which cells attach to neighboring cells and interact. The growth factor plays an important role during embryological development, when neurons are growing rapidly but before myelin begins to have an inhibitory effect.

"When we implant neural stem cells into sites of spinal cord injury, they extend tens of thousands of axons out of the injury site for distances of up to 50 millmeters," said Tuszynski. "Adult axons on the other hand, when coaxed to grow, extend 100 axons for a distance of one millimeter. These findings identify why axon outgrowth from neural stem cell implants is so much better than injured adult axons."

The findings support the developing approach of using neural precursor cells and iPSC-derived stem cells as a viable and promising method for repairing spinal cord injuries, wrote the study authors. More specifically, they point to the need to further investigate the stimulatory effects of myelin on NPCs and NSCs, which "could potentially be exploited for neural repair after spinal cord injury."

###

Co-authors include: Gunnar H.S. Poplawski, Richard Lie, Matt Hunt, Hiromi Kumamaru, Jacob Robins, Philip Canete, Jennifer Dulin, Cedric Geoffroy, Binhai Zheng, and Grace Woodruff, UCSD; Riki Kawaguchi and Giovanni Coppola, UCLA; Paul Lu, UCSD and San Diego Veterans Administration Medical Center; Michael Schafer and Lutz Mensel, Johannes Gutenberg University, Mainz, Germany.

Media Contact

Scott LaFee
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aa12563

Share12Tweet7Share2ShareShareShare1

Related Posts

Boosting Midwifery Skills with Virtual Reality Learning

October 26, 2025

Effective Neonatal Tetanus Treatment: A Nigerian Case Study

October 26, 2025

STK19 Enhances Cisplatin Efficacy in Tongue Cancer

October 26, 2025

Essential Differentiated Care Needed to Combat Tuberculosis

October 26, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1284 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dynamic Traffic Control: Predicting Flow for Efficiency

Boosting Midwifery Skills with Virtual Reality Learning

Goat Genome Study Uncovers Genes for Adaptation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.