• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Improving the resolution of lithography

Bioengineer by Bioengineer
December 6, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, D.C., December 6, 2016 – Flow-lithography is a lithographic method for continuously generating polymer microstructures for various applications such as bioassays, drug-delivery, cell carriers, tissue engineering and authentication. A team of researchers in Korea has demonstrated the use of a wobulation technique to enhance the resolution of flow lithography produced nanostructures.

The technique uses a Digital Light Processing (DLP) projector, similar to those used in projection TVs, to generate lithographic patterns. By overlapping low-resolution frames of the DLP projector a much higher-resolution frame can be produced. The technique described in this week's journal, Applied Physics Letters, by AIP Publishing, could improve 3-D printer performance.

At the heart of the DLP projector is a Digital Micromirror Device (DMD), a small electro-mechanical device which is fabricated through a Micro Electro Mechanical System (MEMS) process. The DMD is essentially an array of very small, controllable mirrors. By reflecting UV light from the mirror array and dynamically controlling each pixel of the array, various UV patterns are projected.

The resolution, however, is strictly limited the pixel size of the DMD. Increasing the resolution of DMD to match that of other lithographic techniques is a challenge that was addressed by using this wobulation technique.

"Wobulation works much like when two transparent, plaid backgrounds are stacked one above the other, the result would be a denser-looking plaid, but the square shape of the plaid is still obvious," said Wook Park, a physicist at Kyung Hee University in Seoul, South Korea. "If we instead shift one layer a bit with respect to the other, the ragged edge of the plaid pattern in much less obvious. In much the same way, we tried to better define the lithographic edge by exposing a UV pattern twice, staggering the second exposure with respect to the first, and by cutting the exposure time of each layer in half. Applying this wobulation technique we achieved an effect just as if a higher-resolution pattern was exposed for the whole exposure time."

There were several benefits to this technique. For example, in the past high, magnification lenses were used to improve lithographic resolution, but this narrowed the field of view.

With this approach, resolution is enhanced while maintaining the same field of view, reducing roughness without reducing throughput.

The next step is to create more complex, three-dimensional hydrogel microstructures that can become a customized bio-fabrication platform. This will allow the development of a 3-D printer that combines a microfluidic device and 3-D printing techniques, providing the capability to continuously produce microcarriers, incorporating biomaterials. Application of the wobulation technique will enable the DLP-based 3-D printer to produce the more sophisticated microstructures needed for these applications.

The team looks forward to realizing the potential of this technique. "One of the biggest challenges in developing 3-D printers is improving the resolution," Park said. "By applying wobulation to address that challenge, we expect to be able to improve the performance of already commercialized DLP 3-D printers."

###

Media Contact

AIP Media
[email protected]
301-209-3090
@jasonbardi

http://www.aip.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Key Drivers of Corporate Governance in Burundi’s Cooperatives

September 21, 2025
Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

September 21, 2025

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.