• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Improving control for users of robotic prosthetics

Bioengineer by Bioengineer
September 22, 2021
in Biology
Reading Time: 2 mins read
0
Mario Ignacio Romero-Ortega, Cullen Endowed Professor of biomolecular engineering at University of Houston
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Houston biomedical engineer has been awarded $2.8 million by the National Institute of Neurological Disorders and Stroke to improve the control of robotic limbs and provide natural sensory feedback from robotic prosthetics to amputees. Mario Ignacio Romero-Ortega, Cullen Endowed Professor of biomolecular engineering, will accomplish this by creating next-generation advanced peripheral nervous system (PNS) interface electrodes.  

Mario Ignacio Romero-Ortega, Cullen Endowed Professor of biomolecular engineering at University of Houston

Credit: University of Houston

A University of Houston biomedical engineer has been awarded $2.8 million by the National Institute of Neurological Disorders and Stroke to improve the control of robotic limbs and provide natural sensory feedback from robotic prosthetics to amputees. Mario Ignacio Romero-Ortega, Cullen Endowed Professor of biomolecular engineering, will accomplish this by creating next-generation advanced peripheral nervous system (PNS) interface electrodes.  

The peripheral nervous system consists of all neurons that exist outside the brain and spinal cord and connects the central nervous system to the rest of the body. After amputation, peripheral nerves remain active and can be connected to electrodes and used to record the movement intent from the user and provide feedback sensation from it. 

“Our study will use an innovative regenerative multi-electrode interface with ultra-small recording sites using our recently developed ultra-thin multielectrode array and incorporate molecular guidance cues to influence the type of sensory neurons at the neural interface,” said Romero-Ortega. “This Regenerative Ultramicro Multielectrode Array (RUMA) is designed to discriminate between motor and cutaneous neural interfacing by combining it with molecular guidance to biologically engineer the content of sensory-motor axons at the electrode interface.” 

With profound consequences, approximately four million amputees globally live with limb loss. Those fortunate enough use the electrically-powered prostheses guided by surface electromyographic signals from intact muscles in the residual limb for movement. But arm amputees often discontinue use due to the lack of sensation from the prosthetic hand, which makes it difficult to operate. Also, current prosthetic devices use electrodes implanted directly into the residual nerve, for sensory feel and prosthetic control. The method has its drawbacks including electrode failure, signal deterioration over time, and eliciting abnormal signals such as “stings or tingles” in users that discourage their use. 

In collaboration with Stuart Cogan from University of Texas at Dallas and Joseph Francis at UH, this study will demonstrate the benefit of using RUMA for selective recording from motor axons. According to Romero-Ortego, this method will improve the control of robotic prosthetics by stimulating sensory axons selectively to provide a more natural control and sensation from bionic limbs.  

“This advancement in peripheral neural interfaces for amputees will reduce the cognitive burden for users of robotic prosthetics and decrease the abnormal sensations associated with electrical stimulation in the PNS,” said Romero-Ortega.  

  

Research reported in this publication was supported by the National Institute Of Neurological Disorders And Stroke of the National Institutes of Health under Award Number R01NS124222. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. 



Share12Tweet8Share2ShareShareShare2

Related Posts

Initiative Aims to Halt Decline of Iconic Butterfly Species

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025
Revolutionary Algorithm Enhances Disease Classification Using Omics

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

October 1, 2025

Uncovering How Pathogens Assemble Protein Machinery to Thrive in the Gut

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    65 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

High-Frame Ultrasound Reveals Liver Cancer Insights

Impact of Reaction Time on α-MnO₂ in Zinc-Ion Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.