• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Improved cellular recycling could benefit patients with neurodegenerative conditions

Bioengineer by Bioengineer
January 9, 2024
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the first time, a research team at The Hospital for Sick Children (SickKids) has uncovered a way to potentially reduce the amount of toxic cellular waste accumulating in patients with Zellweger Spectrum Disorder (ZSD). 

Improved cellular recycling could benefit patients with neurodegenerative conditions

Credit: The Hospital for Sick Children (SickKids).

For the first time, a research team at The Hospital for Sick Children (SickKids) has uncovered a way to potentially reduce the amount of toxic cellular waste accumulating in patients with Zellweger Spectrum Disorder (ZSD). 

ZSD is a group of rare, neurodegenerative genetic conditions caused by genetic variations that reduce the number of peroxisomes – the parts of cells that are responsible for, among other tasks, breaking down fats. ZSD varies in severity and is characterized by progressive neurodegeneration as well as symptoms that range from visual impairments, such as cataracts, to liver and kidney disfunction. 

Like all living things, cellular structures break down over time and must be recycled. In cells, this recycling process is called autophagy. Autophagy in people with ZSD is affected by the lack of working peroxisomes that ultimately causes damage to other parts of the cell, resulting in a buildup of toxic cellular waste that can be fatal. Until now, the connection between peroxisome loss and the disruption in the recycling process in ZSD was unknown. 

In a study published in Nature Communications, researchers led by Dr. Peter Kim, a Senior Scientist in the Cell Biology program at SickKids, and Dr. Robert Bandsma, a Scientist in the Translational Medicine program, discovered that by genetically and pharmaceutically increasing a cell’s ability to recycle its own components it is possible to clear damaged cellular material, providing a new therapeutic target for treating ZSD. 

Looking closely at cellular recycling  

There are more than a dozen known pathways that recycle specific damaged or irrelevant components in a cell. One of these pathways is pexophagy which selectively recycles peroxisomes.  

Previous research from the Kim-Bandsma team found that the most common genetic variation that causes ZSD significantly increases pexophagy, causing healthy peroxisomes to get recycled alongside unhealthy ones. In the new study, Dr. Kyla Germain, a former graduate student in Kim and Bandsma’s labs, found that this increase in pexophagy can also prevent cells from degrading other cellular waste. 

“Our work demonstrates for the first time that different cellular recycling pathways can influence one another,” Germain explains. “A cell’s recycling system has a maximum load capacity – an autophagic limit. When this limit is exceeded, toxic cellular waste will accumulate.” 

After locating this connection between different recycling pathways, researchers found they could optimize the overall recycling process by increasing the autophagic limit. In doing so, they observed improved clearance of cellular waste, which opens new pathways to treat ZSD. 

“These results are exciting as they show that through understanding a fundamental process that takes place in all our cells, we can potentially develop new and better treatments for a very serious condition,” says Bandsma, who is also a Staff Physician in the Division of Gastroenterology, Hepatology and Nutrition at SickKids. 

Informing care beyond ZSD 

The research team is hopeful that findings from this study may inform research in other neurodegenerative conditions that are associated with changes in autophagy, such as Huntington’s disease and Parkinson’s disease. 

“We identified that protein aggregates involved in Huntington’s disease and Parkinson’s disease can also prevent the turnover of damaged peroxisomes, which means scientists may be able to target these components in patients outside the field of ZSD,” Kim says. 

The Kim-Bandsma team’s next step is to take this research into a pre-clinical ZSD models to test various therapeutics that could either increase autophagy or inhibit pexophagy. These studies will be done using the expertise at the SPARC Drug Discovery core facility at SickKids. 

This work was supported by the Canada Institutes of Health Research (CIHR), the Ontario Graduate Scholarship, a Hayden Hantho Award and the Hilda and William Courtney Clayton Paediatric Research Fund. 



Journal

Nature Communications

DOI

10.1038/s41467-023-44005-4

Article Publication Date

9-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.