• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Improved cell response seen with hybrid immunity

Bioengineer by Bioengineer
March 24, 2022
in Biology
Reading Time: 4 mins read
0
Marion Pepper Lab UW Medicine
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

People who were infected with SARS-CoV-2 before being vaccinated generate an immune response more specific to fighting viral infections, and produce a broader antibody response, than do people whose only protection is the vaccine, according to researchers at the University of Washington School of Medicine.

Marion Pepper Lab UW Medicine

Credit: Christian Howard/UW Immunology

People who were infected with SARS-CoV-2 before being vaccinated generate an immune response more specific to fighting viral infections, and produce a broader antibody response, than do people whose only protection is the vaccine, according to researchers at the University of Washington School of Medicine.

“Vaccines alone work incredibly well at protecting against disease; they just don’t generate as diverse an immune response as does infection followed by vaccination,” said Marion Pepper, associate professor in the UW Department of Immunology, who led the research.

Pepper and colleagues reported their findings in the journal Cell. Lauren Rodda and Kurt Pruner, a post-doctoral and doctoral student, respectively, and Peter Morawksi of the Benaroya Research Institute in Seattle were lead authors on the paper.

Immunity to SARS-CoV-2 can be acquired in two ways: by getting the infection or getting the vaccine. If you get it from an infection, it is “naturally acquired immunity.” If you get it from vaccination alone, it is “vaccine-acquired immunity.” But if you get it from having an infection and then you also get the vaccine, it is “hybrid immunity.” Previous research has indicated that hybrid immunity provides better protection against the virus than either naturally acquired or vaccine acquired immunity. 

In the new study, the researchers sought to find out why. They compared differences in the immune response to SARS-CoV-2 over the course of three doses of the vaccine in 30 people who had previously been infected, and in 24 who had been vaccinated but never infected.

They found that, after vaccination, those who had previously been infected generated more memory B cells, which generate antibodies that can neutralize the virus and prevent infection. These memory B cells in people with hybrid immunity also generated a wider variety of antibodies that not only can neutralize the original strain of the virus but also more recent variants such as delta and omicron. 

“Even if their first infection was caused by the earliest strain, the Wuhan strain, and the vaccine they received was based on that strain, people with hybrid immunity were capable of generating neutralizing antibodies against every variant we threw at them,” Pepper said.

Hybrid immunity also generated a cellular immune response more specific for fighting viral infections, called a Th1 response. In this response, immune cells called CD4+ T cells release inflammatory signals, specifically a cytokine called Interferon-gamma that is antiviral. CD4+ T cells from previously infected individuals were also found to produce more Interleukin-10, which can suppress inflammation and potentially prevent pathology.

“While additional vaccination could increase the number of CD4+ T cells in those who had not been infected to levels in those who had, it could not generate the same quality of CD4+ T cell response seen in those with hybrid immunity,” Pepper said.

Several factors could explain why the hybrid immunity appears more robust. One factor may simply be time. After exposure to a pathogen, immune cells in the lymph nodes refine the immune response. This immune maturation process generates antibodies and cells that are more effective against new infection. 

In the case of the hybrid immunity group, a year passed from the time of infection until they received the vaccine. Individuals in the vaccine-only group, on the other hand, received their second dose just a few weeks after their first, giving the immune system far less time to refine its response.

Another factor may be where the immune system first interacts with an invading pathogen. Different parts of the body have different environments that shape how the immune system responds to infection. The immune cells of the study participants with hybrid immunity first encountered the virus in their lungs and nasal passages. Cells of those in the vaccine-only group, by contrast, first encountered the viral protein in the muscle where they received the vaccine.

It is likely that exposure in the lungs and mucosal tissues such as those found in the nasal passages generates a better immune response to a respiratory pathogen because the cells can then be better retained at these sites, Pepper said. Her group’s findings could help scientists design vaccines that take advantage of this effect, such as those that can be administered to the nasal passages or inhaled directly into the lung. 

Although vaccination after prior infection appears to produce an enhanced immune response to SARS-CoV-2 infection, it is critical that people who have been infected get vaccinated to have this benefit, said Pepper. “People who had COVID-19 should definitely get the vaccine. Not only does immunity to infection wane over time, but also vaccination is required to create this hybrid immunity.”

The research was supported by the National Institutes of Health (R01AI127726, U19AI125378-S1, U01AI142001, R01AI118803), the Burroughs Wellcome Fund and an Emergent Ventures Fast Grant.

– This news release was written by Michael McCarthy.

 



Journal

Cell

DOI

10.1016/j.cell.2022.03.018

Method of Research

Experimental study

Subject of Research

Human tissue samples

Article Title

Imprinted SARS-CoV-2 specific memory lymphocytes define hybrid immunity

Article Publication Date

16-Mar-2022

COI Statement

Marion Pepper is on the scientific advisory boards of VaxArt and Neoleukin Inc

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sex Differences in Social Health Drivers and Interventions

October 22, 2025
blank

Long-Read Metagenomics Tracks Strains Post-Transplant

October 22, 2025

Unraveling the Psoas Major: Pig Muscle Quality Insights

October 22, 2025

Decoding the Science Behind Aging

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1273 shares
    Share 508 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    305 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    143 shares
    Share 57 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanostructured Lipid Carriers Boost Xanthohumol Uptake

Nanoagent Targets Kidneys for Imaging and Repair

Scientists Investigate the Composition of Crystals Found in Reptile Excretions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.