• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Important new aspects are revealed about the control of cell division

Bioengineer by Bioengineer
December 12, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Seville

Experts from the University of Seville and the Andalusian Centre for Molecular Biology and Regenerative Medicine (Cabimer) have published a new study on the mechanisms that regulate cell division and guarantee the correct distribution of chromosomes during this process. In particular, they especially highlight the fundamental role that an organelle, specifically the nucleolus, plays in the coordination of these processes.

In the nucleolus, hijacked proteins are kept which are key to the regulation of the cell cycle. These are only released when it is necessary for them to carry out their function. The peculiar structure of the nucleolus is, however, inconvenient for the cells. So, once the genome is copied so it can be distributed between the daughter cells during cell division, the repetitive nature of Ribosomal DNA, around which the nucleolus is formed, means that unions can be generated between the chromosomes that can interfere with the correct distribution of the chromosomes during mitosis. In order to eliminate these unions, the cells promote DNA condensation, which leads to the compaction of the DNA before its distribution.

"Our study has demonstrated that precise temporal control of rDNA compaction is necessary to allow equal distribution of the chromosomes during mitosis without interfering with the correct progression of the cell cycle. Additionally, our results suggest that cells can use the degree of compaction of the nucleolus as a mechanism for stopping the progression of the cell cycle in adverse conditions, such as a lack of nutrients", explains the project director, Fernando Monje.

When the cells acquire an incorrect number of chromosomes, which is called aneuploidy, cellular tumours can appear. It is estimated that more than 90% of all solid tumours in humans are caused by aneuploidy. For that reason, understanding the mechanisms that guarantee the fidelity of the genome transmission during cell division is of enormous importance for understanding how errors in this process can cause the appearance of tumours.

"These advances in basic science open the door to future research which could help to clarify the mechanisms by which human cells guarantee the correct distribution of chromosomes during cell division. This, as has previously been indicated, will be of enormous help for understanding how errors in the functioning of these mechanisms can lead to the start of tumour growth", the researcher adds.

The experts at Cabimer are continuing to work to see how to stop cell proliferation in adverse conditions. This will allow for the identification of new factors that are involved in the appearance of diseases like cancer.

###

Media Contact

Fernando Monje
[email protected]
@unisevilla

http://www.us.es

Original Source

http://dx.doi.org/10.1016/j.cub.2017.09.028 http://dx.doi.org/10.1016/j.cub.2017.09.028

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Impact of Perfluoroalkyl Substances on E. coli Phases

November 9, 2025
blank

Assessing Spikelet Fertility and HSP70 for Heat Tolerance

November 9, 2025

Unlocking Early-Onset Schizophrenia: Blood Neurotransmitters Revealed

November 9, 2025

Enhancing Pain Care for Frail Seniors: Insights Unveiled

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Perfluoroalkyl Substances on E. coli Phases

Assessing Spikelet Fertility and HSP70 for Heat Tolerance

Unlocking Early-Onset Schizophrenia: Blood Neurotransmitters Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.