• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Immune study points to new ways to treat lung disease

Bioengineer by Bioengineer
August 14, 2017
in Biology
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fresh insight into how the immune system keeps itself in check could lead to new ways of fighting chronic lung disease.

New findings could open avenues of research for tackling damage caused by cells that overreact to infection.

Scientists from the University of Edinburgh studied immune cells known as neutrophils, which fight bacteria and help to cause inflammation, a normal biological response to wounds or infection that is recognisable by redness and swelling.

They found that when neutrophils lose a certain oxygen-sensing protein, the cells become overactive and respond excessively to infection in a harmful way.

Studies in mice found that by preventing the cells from using sugar, this effect could be reversed.

Studying the effects of oxygen-sensing proteins in immune cells is especially relevant for patients who often have low levels of oxygen in their body and chronic lung inflammation.

The study, funded by the Wellcome Trust, is published in the Journal of Clinical Immunology.

Professor Sarah Walmsley, of the MRC Centre for Inflammation Research, said: "This finding demonstrates the therapeutic potential of targeting how neutrophils use glucose in the treatment of chronic inflammatory diseases. As many of these diseases have no effective treatment, future studies examining the role of glucose in regulating neutrophils and inflammation are critical."

###

Media Contact

Joseph Willson
[email protected]
@edinunimedia

http://www.ed.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Exploring Prophages in Enterococcus faecium: Diversity & Resistance

October 29, 2025
“‘Broken’ Genes Key to Marsupial Fur Color Variation”

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

October 28, 2025

Gymnema sylvestre’s Antifungal Compounds and Optimization

October 28, 2025

Sorghum Polyamine Oxidase Genes: Drought Resilience Insights

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

STXBP6 Controls Ovarian Cancer via PI3K/AKT Pathway

Understanding Countertransference in Eating Disorder Therapy

Assessing Turkish Regret Intensity Scale’s Validity and Reliability

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.