• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Immune strategy based on limited information in the network

Bioengineer by Bioengineer
November 25, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The novel coronavirus outbreak is a global pandemic that has spread to more than 200 countries and territories around the world. Currently, countries and territories are fighting the spread of the disease using social distancing such as quarantine, testing or isolation which can be regarded as immunization.

Given the important role that networks play in disease spreading, much effort has been made to understand and develop efficient methods such as targeted immunization. Previous models have typically assumed full knowledge of the network structure and immunized the most central nodes (see left panel of the below figure). However, in real-world scenarios, knowledge and observations of the full social network is usually limited thereby precluding a full assessment of the optimal (most central) nodes to test or quarantine or immunize that will efficiently stop the spread of pandemic.

Here, they present and study a novel and efficient immunization strategy incorporating the realistic case that we have only limited observability of the network (see right panel of the above figure). One can assume that only n nodes can be observed at a given time and that the most central of these n is immunized. This could represent a case where separate teams are sent to immunize or quarantine individuals. Each team examines n individuals and immunizes or quarantines the most connected of these n nodes.

The authors find, both analytically and via simulations, that as n increases, to even moderate numbers (approximately 10), the percolation threshold increases significantly towards its optimal value for i.e., towards percolation with full information. Larger values of percolation thresholds imply greater efficiency since a lower fraction of nodes can be immunized to stop the epidemic. They develop a general analytical framework for this approach of information on only n nodes, and determine the critical percolation threshold and the size of the giant component for networks with arbitrary degree distributions, for any given n. They also test our limited knowledge immunization on real-world networks and confirm that in these real networks, the critical threshold increases significantly even for small n.

The findings highlight that even for low n around 10 (local knowledge i.e., degrees of only 10 nodes) it is possible to obtain a significant reduction in the spreading as represented by the lower size of the giant component and the higher critical point of transition. These findings could help in applying efficient methods for immunizing individuals.

###

See the article:

Yangyang Liu, Hillel Sanhedrai, GaoGao Dong, Louis M. Shekhtman, Fan Wang, Sergey V. Buldyrev, Shlomo Havlin
Efficient network immunization under limited knowledge
Natl Sci Rev; doi: 10.1093/nsr/nwaa229
https://doi.org/10.1093/nsr/nwaa229

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Gaogao Dong
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa229

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

September 10, 2025
blank

A Decade Later: Gravitational Waves Confirm Stephen Hawking’s Black Hole Area Theorem

September 10, 2025

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

September 10, 2025

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Faster Diagnostic Scans Could Revolutionize Prostate Cancer Detection for Millions

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

Designed to Learn: How Early Brain Structure Sets the Stage for Efficient Learning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.