• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Immune strategy based on limited information in the network

Bioengineer by Bioengineer
November 25, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The novel coronavirus outbreak is a global pandemic that has spread to more than 200 countries and territories around the world. Currently, countries and territories are fighting the spread of the disease using social distancing such as quarantine, testing or isolation which can be regarded as immunization.

Given the important role that networks play in disease spreading, much effort has been made to understand and develop efficient methods such as targeted immunization. Previous models have typically assumed full knowledge of the network structure and immunized the most central nodes (see left panel of the below figure). However, in real-world scenarios, knowledge and observations of the full social network is usually limited thereby precluding a full assessment of the optimal (most central) nodes to test or quarantine or immunize that will efficiently stop the spread of pandemic.

Here, they present and study a novel and efficient immunization strategy incorporating the realistic case that we have only limited observability of the network (see right panel of the above figure). One can assume that only n nodes can be observed at a given time and that the most central of these n is immunized. This could represent a case where separate teams are sent to immunize or quarantine individuals. Each team examines n individuals and immunizes or quarantines the most connected of these n nodes.

The authors find, both analytically and via simulations, that as n increases, to even moderate numbers (approximately 10), the percolation threshold increases significantly towards its optimal value for i.e., towards percolation with full information. Larger values of percolation thresholds imply greater efficiency since a lower fraction of nodes can be immunized to stop the epidemic. They develop a general analytical framework for this approach of information on only n nodes, and determine the critical percolation threshold and the size of the giant component for networks with arbitrary degree distributions, for any given n. They also test our limited knowledge immunization on real-world networks and confirm that in these real networks, the critical threshold increases significantly even for small n.

The findings highlight that even for low n around 10 (local knowledge i.e., degrees of only 10 nodes) it is possible to obtain a significant reduction in the spreading as represented by the lower size of the giant component and the higher critical point of transition. These findings could help in applying efficient methods for immunizing individuals.

###

See the article:

Yangyang Liu, Hillel Sanhedrai, GaoGao Dong, Louis M. Shekhtman, Fan Wang, Sergey V. Buldyrev, Shlomo Havlin
Efficient network immunization under limited knowledge
Natl Sci Rev; doi: 10.1093/nsr/nwaa229
https://doi.org/10.1093/nsr/nwaa229

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Gaogao Dong
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa229

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

Perpendicular-Anisotropy Spin Ice Enables Tunable Reservoir Computing

Nutrient Sources’ Influence on Gladiolus Growth and Soil Microbes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.