• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Immune cells of the brain are not all the same – new research could open novel therapeutic pathways

Bioengineer by Bioengineer
May 15, 2023
in Biology
Reading Time: 3 mins read
0
Immune cells of the brain are not all the same – new research could open novel therapeutic pathways
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent study published in Nature Neuroscience indicates that, contrary to common belief, the immune cells of the brain, known as microglia, are not all the same. Researchers found that a unique microglial subset with unique features and function is important for establishing proper cognitive functions in mice. Evidence for such microglial subsets exists also for the human brain, opening exciting new possibilities for novel therapies.

Immune cells of the brain are not all the same – new research could open novel therapeutic pathways

Credit: Vassilis Stratoulias

A recent study published in Nature Neuroscience indicates that, contrary to common belief, the immune cells of the brain, known as microglia, are not all the same. Researchers found that a unique microglial subset with unique features and function is important for establishing proper cognitive functions in mice. Evidence for such microglial subsets exists also for the human brain, opening exciting new possibilities for novel therapies.

An international collaboration led by researchers from University of Helsinki, Karolinska Institutet and University of Seville characterized ARG1+microglia, a subset of microglial cells, that produces the enzyme called arginase-1 (ARG1). Using advanced imaging techniques, the team found that ARG1+microglia are abundant during development and less prevalent in adult animals. Strikingly, these ARG1+microglia are located in specific brain areas important for cognitive functions such as learning, thinking and memory. 

“Cognition and memory are crucial components of what makes us human, and microglia are necessary for proper brain development and function. Cognitive decline is a common feature of neurodegenerative and psychiatric conditions like Alzheimer’s and Parkinson’s disease, schizophrenia and depression” says Dr. Vassilis Stratoulias, Senior Researcher at the University of Helsinki and lead author of the study.

“Microglia are involved in virtually all brain pathologies, making them prime candidates for novel drug targets and innovative therapeutic approaches. Understanding the fundamental biology of these cells will be the way to produce new directions for drug development to treat currently untreatable diseases of the brain”, adds co-author, Dr. Mikko Airavaara from the University of Helsinki.

Abnormal behavior reveals cognitive deficits

The researchers found that mice lacking the microglial protein ARG1 were less willing to explore new environments. This abnormal rodent behavior is linked to cognitive deficits and, more specifically, to impairments in the hippocampus, a part of the brain important for learning and memory.

The researchers could not identify any differences in the shape of ARG1+microglia when compared to neighboring microglia that do not express ARG1, suggesting a reason why these microglia have not been studied before. Using a technology that allows for comparison of the RNA profiles between cell populations, ARG1+microglia were found to be significantly different from neighboring ARG1-negative microglia on the molecular level.

Another key finding of the study is that female animals exhibited more pronounced behavioral and hippocampal impairments caused by ARG1 microglial deficiency. Sex bias is present in many diseases including Alzheimer’s disease. In fact, women are more likely than men to suffer from Alzheimer’s disease – the most common neurodegenerative disease in which cognitive abilities are severely compromised. Microglia have emerged as key players in Alzheimer’s illness in recent years, making the findings of this study relevant to this disease. Although more research is needed to demonstrate a link between Alzheimer’s disease and a specific microglial subset, this study could provide a new prism under which we see Alzheimer’s disease in specific – and brain diseases in general – and open new therapeutic pathways.

Dr. Bertrand Joseph, Professor at Karolinska Institutet and senior author says:

“In addition to offering better understanding of brain development and the contribution of microglial diversity to that, the study could provide new clues about how to manage neurodevelopmental disorders or neurodegenerative disorders presenting a cognitive component and often differences between males and females.” 



Journal

Nature Neuroscience

DOI

10.1038/s41593-023-01326-3

Method of Research

Experimental study

Subject of Research

Cells

Article Title

ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain

Article Publication Date

11-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Frontiers Forum Deep Dive: AI and Omics Drive Personalized Drug and RNA Therapy Innovations for Heart Disease

Frontiers Forum Deep Dive: AI and Omics Drive Personalized Drug and RNA Therapy Innovations for Heart Disease

October 7, 2025
blank

Wiley Integrates Support for Nanalysis NMR Instruments in KnowItAll 2026

October 7, 2025

Illegal Cannabis Cultivation Imprints Persistent Chemical Residues on California’s Public Lands

October 7, 2025

Salt Tolerance Mechanism of Desertifilum salkalinema Unveiled

October 7, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    790 shares
    Share 316 Tweet 197
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Children’s Generalization Tied to Memory, Age, Abstractness

Tracking Cancer Screening Adherence Across U.S. Populations

Optimizing Housing Designs to Cut Multi-Hazard Losses

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.