• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Imaging through random media using coherent averaging

Bioengineer by Bioengineer
March 7, 2023
in Biology
Reading Time: 2 mins read
0
Professor Jung-Hoon Park (center) and his research team
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent study, affiliated with UNIST has introduced an effective method of restoring images distorted by fog. According to the research team, their method can also provide a breakthrough by exploiting the random fluctuations for diffraction-limited image reconstruction through live tissues.

Professor Jung-Hoon Park (center) and his research team

Credit: UNIST

A recent study, affiliated with UNIST has introduced an effective method of restoring images distorted by fog. According to the research team, their method can also provide a breakthrough by exploiting the random fluctuations for diffraction-limited image reconstruction through live tissues.

Published in the January 2023 issue of Laser & Photonics Reviews, this breakthrough has been led by Professor Jung-Hoon Park in the Department of Biomedical Engineering at UNIST.

In this study, the research team demonstrated a new method for phase retrieval using randomly distorted images simply by exploiting the Fourier phase information that is recovered by using the shift-and-add method which has previously never been realized.

Unlike previous approaches in iterative phase retrieval, which require assumptions about the object beforehand, such as non-negativity and constraints on the extension area of the object, the new method is fast with almost no excess computational load and does not require pre-assumed constraints or initial guesses. It is also drawing attention as a technology that will acquire high-quality images for autonomous vehicles or high-resolution images inside biological tissues.

Various phenomena in everyday life can be obscured by various factors, such as haze, fog, and wind. This reduction in viewing distance creates restrictions on behavior, especially as a risk factor for driving. Therefore, image distortion must be overcome to implement safe autonomous driving regardless of weather.

Adaptive optics (AO), which corrects image distortion, is already being used in the astronomical space field. It corrects the starlight distorted by the atmosphere to observe the universe clearly. However, this technology requires expensive professional equipment such as wavefront measuring devices and wavefront controllers, making it difficult to use it to overcome image distortion in daily life.

In this study, the research team demonstrated a new phase retrieval method for imaging through random media. Although methods to recover the Fourier amplitude through random distortions are well established, recovery of the Fourier phase has been a more difficult problem and is still a very active and important research area.

It has been shown that by simply ensemble averaging shift-corrected images, the Fourier phase of an object obscured by random distortions can be accurately retrieved up to the diffraction limit. According to the research team, the method is simple, fast, does not have any optimization parameters, and does not require prior knowledge or assumptions about the sample. Furthremore, the feasibility and robustness of the method were demonstrated by realizing all computational diffraction-limited imaging through atmospheric turbulence as well as imaging through multiple scattering media.

Their findings have been published in the January 2023 issue of Laser & Photonics Reviews.

Journal Reference
Byungjae Hwang, Taeseong Woo, Cheolwoo Ahn, Jung-Hoon Park, “Imaging through Random Media Using Coherent Averaging,” Laser Photon Rev., (2023).

 



Article Title

Imaging through Random Media Using Coherent Averaging

Article Publication Date

1-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Rescuing Cells from the Edge of Death: Understanding Its Crucial Importance

Rescuing Cells from the Edge of Death: Understanding Its Crucial Importance

October 16, 2025
Women’s Health Research Funding in Canada Lags Behind

Women’s Health Research Funding in Canada Lags Behind

October 16, 2025

Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

October 16, 2025

Disconnected Cerebral Hemisphere in Epilepsy Patients Exhibits Sleep-Like Activity During Wakefulness

October 16, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1253 shares
    Share 500 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain Flight Simulator Unveils Insights into Learning and the Causes of Cognitive Drift

MD Anderson Unveils Groundbreaking Advances in Research

How a Program Shielded a Brazilian City Amid a Global Dengue Epidemic

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.