• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Illuminating the secret of glow-in-the-dark mushrooms

Bioengineer by Bioengineer
April 26, 2017
in Science News
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Cassius V. Stevani/IQ-USP, Brazil

Illuminating the Secret of Glow-in-the-Dark Mushrooms: Scientists now understand what makes bioluminescent mushrooms glow, which may pave the way to new possibilities for harnessing fungal bioluminescence in analytical and imaging technologies. Bioluminescence is a highly conserved phenomenon that exists in a wide range of organisms; there are roughly 80 different known species of bioluminescent fungi alone scattered across the globe. In most cases, light emission from living organisms occurs when a molecule called luciferin and its enzyme partner, luciferase, mix together with energy and atmospheric oxygen, triggering a chemical reaction that produces a very "excited" oxyluciferin, which releases light energy in order to "calm down" to its ground state. The luciferin-luciferase pathway has been well-characterized in bioluminescent insects, bacteria and some marine animals — but not in fungi. Here, Zinaida Kaskova and her team were able to elucidate the molecular components involved in the fungal luciferin-luciferase pathway, leading to the discovery of the fungal equivalent of oxyluciferin by analyzing extracts of Neonothopanus gardneri (a fluorescent mushroom native to Brazil), and Neonothopanus nambi (a poisonous mushroom found in the rainforests of southern Vietnam). The authors suggest that fungal luciferase may be "promiscuous," potentially able to interact with multiple derivatives of fungal luciferin, leading to changes in intensity and color of emission.

###

Media Contact

Cassius V. Stevani
[email protected]
55-113-091-1194
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Clinical Trial Explores Internal Radiation Therapy for Kidney Cancer Treatment

October 2, 2025
blank

Embracing Uncertainty: A New Approach for Engineers in Designing Complex Systems

October 2, 2025

Advancing Efficient Room-Temperature Fluorine Recovery from Fluoropolymers

October 2, 2025

WindSTAR Secures NSF Grant to Fuel Advancements in AI Research

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Clinical Trial Explores Internal Radiation Therapy for Kidney Cancer Treatment

Embracing Uncertainty: A New Approach for Engineers in Designing Complex Systems

Advancing Efficient Room-Temperature Fluorine Recovery from Fluoropolymers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.