• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies

Bioengineer by Bioengineer
August 28, 2023
in Health
Reading Time: 3 mins read
0
Phenotypic shift of VSMCs in response to hypoxia condition of panvascular system
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This study is led by Prof. Junbo Ge (Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases), Prof. Hua Li (Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases), and Prof. Hao Lu (Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases).

Phenotypic shift of VSMCs in response to hypoxia condition of panvascular system

Credit: ©Science China Press

This study is led by Prof. Junbo Ge (Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases), Prof. Hua Li (Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases), and Prof. Hao Lu (Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases).

As an emerging concept, panvascular diseases encompass a group of cardiovascular disorders characterized mainly by atherosclerosis, involving crucial organs such as the heart, brain, kidneys, and limbs. Hypoxia-inducible factor (HIF) plays a pivotal role as a major regulatory factor in the cardiovascular system’s response to common stressors, such as hypoxia. Meanwhile, vascular smooth muscle cells (VSMCs) serve as key cells responsible for regulating cardiovascular system pressure and oxygen delivery. The plasticity, versatility, and interaction of these two factors with panvascular diseases warrant in-depth investigation.

In the pathological state of panvascular diseases, overactive VSMCs (e.g., in atherosclerosis, pulmonary arterial hypertension) or dysfunctional VSMCs (e.g., in arterial aneurysms, vascular calcification) are closely associated with HIFs. These widespread systemic diseases also underscore the interdisciplinary nature of panvascular medicine. Furthermore, considering the similarities in proliferative characteristics between VSMCs and cancer cells, as well as the delicate balance between angiogenesis and cancer progression, there is an urgent need for more precise regulatory targets or combination therapies to enhance the effectiveness of HIF-targeted treatments. Based on the above content, this review focuses on discussing the significance of the HIF signaling pathway in panvascular diseases related to VSMCs, taking into consideration the importance of balancing global and local, as well as temporal and spatial aspects.

The review also explored the relevance of HIF-related drugs’ targets in panvascular diseases while weighing their pros and cons. The “-dustats” is a novel type of drug that can inhibit PHD, thus activating the HIF-EPO pathway, and its effect on increasing EPO in the body is gentle. In existing research, the drug “-dustats” has been found to improve iron metabolism while treating anemia, and it generally does not exhibit significant cardiovascular side effects or promote cancer occurrence. Furthermore, more precise and targeted HIF pathway-activating drugs require either more specific indirect activation of HIF (e.g., inhibitors targeting specific PHD1-3 or FIH) or more effective direct activation targeting the specific HIF isoforms. Additionally, the issue of drug resistance also needs to be addressed.

Collectively, there are three key points in advancing the transformation of HIF-related treatment strategies for VSMC in panvascular medicine: (1) focusing on the commonality and specificity of HIFs in panvascular disease; (2) the overall consideration of targeting HIF-related pathways, and (3) the development of precise drugs targeting HIF-related pathways. Overall, the clinical transformation of HIFs-related therapies requires that doctors pay more attention to individual differences (eg, place of residence, gender, and disease) in diagnosis and treatment to identify underlying problems; researchers explore and clarify the different roles and interactions of HIFs in different organs/systems or different stages of the disease; and pharmaceutical experts or engineers strive to industrialize the production of personalized targeted drugs with superior pharmacodynamics and pharmacokinetics. Therefore, based on the principle of “from doctors, by engineers/researchers, for patients”, the substantial clinical transformation of HIFs-related treatment in panvascular medicine can be realized.



Journal

Science Bulletin

DOI

10.1016/j.scib.2023.07.032

Share12Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.