• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Hydrogen Sulfide Greatly Enhances Plant Growth

Bioengineer by Bioengineer
October 29, 2013
in NEWS
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
But in low doses, hydrogen sulfide could greatly enhance plant growth, leading to a sharp increase in global food supplies and plentiful stock for biofuel production, new University of Washington research shows.
“We found some very interesting things, including that at the very lowest levels plant health improves. But that’s not what we were looking for,” said Frederick Dooley, a UW doctoral student in biology who led the research.
Dooley started off to examine the toxic effects of hydrogen sulfide on plants but mistakenly used only one-tenth the amount of the toxin he had intended. The results were so unbelievable that he repeated the experiment. Still unconvinced, he repeated it again – and again, and again. In fact, the results have been replicated so often that they are now “a near certainty,” he said.
“Everything else that’s ever been done on plants was looking at hydrogen sulfide in high concentrations,” he said.
The research is published online April 17 in PLOS ONE, a Public Library of Science journal.
At high concentrations – levels of 30 to 100 parts per million in water – hydrogen sulfide can be lethal to humans. At one part per million it emits a telltale rotten-egg smell. Dooley used a concentration of 1 part per billion or less to water seeds of peas, beans and wheat on a weekly basis. Treating the seeds less often reduced the effect, and watering more often typically killed them.

With wheat, all the seeds germinated in one to two days instead of four or five, and with peas and beans the typical 40 percent rate of germination rose to 60 to 70 percent.
“They germinate faster and they produce roots and leaves faster. Basically what we’ve done is accelerate the entire plant process,” he said.
Crop yields nearly doubled, said Peter Ward, Dooley’s doctoral adviser, a UW professor of biology and of Earth and space sciences and an authority on Earth’s mass extinctions.
Hydrogen sulfide, probably produced when sulfates in the oceans were decomposed by sulfur bacteria, is believed to have played a significant role in several extinction events, in particular the “Great Dying” at the end of the Permian period. Ward suggests that the rapid plant growth could be the result of genetic signaling passed down in the wake of mass extinctions.
At high concentrations, hydrogen sulfide killed small plants very easily while larger plants had a better chance at survival, he said, so it is likely that plants carry a defense mechanism that spurs their growth when they sense hydrogen sulfide.
“Mass extinctions kill a lot of stuff, but here’s a legacy that promotes life,” Ward said.
Dooley recently has applied hydrogen sulfide treatment to corn, carrots and soybeans with results that appear to be similar to earlier tests. But it is likely to be some time before he, and the general public, are comfortable with the level of testing to make sure there are no unforeseen consequences of treating food crops with hydrogen sulfide.
The most significant near-term promise, he believes, is in growing algae and other stock for biofuels. Plant lipids are the key to biofuel production, and preliminary tests show that the composition of lipids in hydrogen sulfide-treated plants is the same as in untreated plants, he said.
When plants grow to larger-than-normal size, they typically do not produce more cells but rather elongate their existing cells, Dooley said. However, in the treatment with hydrogen sulfide, he found that the cells actually got smaller and there were vastly more of them. That means the plants contain significantly more biomass for fuel production, he said.
“If you look at a slide of the cells under a microscope, anyone can understand it. It is that big of a difference,” he said.
Ward and Suven Nair, a UW biology undergraduate, are coauthors of the PLOS ONE paper. The work was funded by the UW Astrobiology Program.

Story Source:

The above story is reprinted from materials provided by University of Washington. The original article was written by Vince Stricherz.

Share12Tweet8Share2ShareShareShare2

Related Posts

AI Models Evaluate Dental History in Systemic Health

AI Models Evaluate Dental History in Systemic Health

January 9, 2026
blank

Machine Learning for Identifying Assists in Soccer

January 9, 2026

Testosterone: Key Metabolic Messenger Uncovered

January 9, 2026

30-Day Mortality: VA vs. Community Hospitals After Angiography

January 9, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    144 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Models Evaluate Dental History in Systemic Health

Machine Learning for Identifying Assists in Soccer

Testosterone: Key Metabolic Messenger Uncovered

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.