• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Hydrogen production: This is how green algae assemble their enzymes

Bioengineer by Bioengineer
March 27, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: RUB, Kramer

Researchers at Ruhr-Universität Bochum have analysed how green algae manufacture complex components of a hydrogen-producing enzyme. The enzyme, known as the hydrogenase, may be relevant for the biotechnological production of hydrogen.

To date, little is known about the way organisms form this type of hydrogenases under natural conditions. Using novel synthetic biology methods, the team around Dr Anne Sawyer, PhD student Yu Bai, assistant professor Dr Anja Hemschemeier and Prof Dr Thomas Happe from the Bochum-based research group Photobiotechnology, discovered that a specific protein machinery in the green algal chloroplasts is required for the production of a functional hydrogenase. The researchers published their findings in "The Plant Journal".

Complex structure

The team worked with the single-cell alga Chlamydomonas reinhardtii. These organisms have a specific protein machinery in different regions of the cells that assembles enzymes – e.g. in the photosynthesis-conducting chloroplasts and in the cell fluid, i.e. the cytoplasm.

One enzyme that requires such assembly is the HYDA1 enzyme, which contains a complex cofactor, which is the area inside the enzyme where the actual hydrogen production takes place. The cofactor consists of a cluster of four iron and four sulphur atoms; a configuration frequently found in enzymes. What is unusual, however, is that a second cluster of two additional iron atoms binds to it for the hydrogen catalysis.

Special protein machinery necessary

Happe, Sawyer and their colleagues intended to identify the elements necessary for producing the cofactor in the living cell. They introduced hydrogenase precursors in different regions of the green algal cell, namely in the chloroplast and the cytoplasm. The protein machinery in the chloroplast was the only one capable of assembling a functioning hydrogenase. The machinery in the cytoplasm couldn't produce the complex cofactor.

Bacterial enzyme in green algae

In a subsequent test, the researchers implanted the blueprint of a bacterial hydrogenase in the green algal genome. Chlamydomonas reinhardtii used it to produce a functional enzyme that efficiently generated hydrogen.

"Based on these findings, we can develop biotechnological methods, in order to achieve efficient hydrogen production in green algae," says Happe. "We now know that the machinery that assembles enzymes in the chloroplasts is unique and irreplaceable."

###

Media Contact

Thomas Happe
[email protected]
49-234-322-7026
@ruhrunibochum

http://www.ruhr-uni-bochum.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Skin Microbiome Changes in Multiple System Atrophy

August 23, 2025
Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

August 23, 2025

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

August 23, 2025

Ancient Skull Sheds Light on Plotopteridae Origins

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skin Microbiome Changes in Multiple System Atrophy

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.