• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Hybrid catalyst with high enantiomer selectivity

Bioengineer by Bioengineer
August 9, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Hokkaido University

A group of Japanese researchers has developed a technology to create a hybrid catalyst from simple-structured, commercially available rhodium and organic catalysts, which reduces chemical waste and produces molecules with high selectivity of an enantiomer, a pair of molecular structures that are non-superimposable mirror images of each other. This technology is expected to assist in rapid and low-cost drug synthesis.

The technology was developed by scientists including Professor Shigeki Matsunaga and Assistant Professor Tatsuhiko Yoshino, both of Hokkaido University's Faculty of Pharmaceutical Science, and Professor Kazuaki Ishihara and Associate Professor Manabu Hatano, both of Nagoya University's Graduate School of Engineering.

The two molecular structures found in an enantiomer have different effectiveness when used as drugs, even though their chemical properties are similar. One molecular structure can be effective, while the other can trigger serious side effects. It is therefore important to select the desired molecular structure for chemical conversion when synthesizing drugs. In addition, to manufacture medicines with less waste, it is necessary to have the chemical conversion occur only at a desired carbon-hydrogen bond with the use of catalysts. To fulfill these two requirements, scientists have been using expensive rhodium catalysts made in complex, multi-phased production processes. The limited availability of such rhodium catalysts has made it difficult to apply them for industrial use.

In the present study published in Nature Catalysis, simple-structured, commercially available rhodium was combined with a readily available organic catalyst in one step by utilizing ionic interactions. A simple rhodium catalyst is capable of activating the desired carbon-hydrogen bond, but it's not good at selectively obtaining only one molecular structure in an enantiomer. Organic catalysts, meanwhile, are capable of producing the targeted molecular structure, but are not effective in activating the desired carbon-hydrogen bond. This newly developed hybrid catalyst is able to compensate for both individual shortcomings. Using the hybrid catalyst, the researchers succeeded in activating only the targeted carbon-hydrogen bond and selectively obtaining one molecular structure in the enantiomer when conducting chemical conversions of nucleobase derivatives, which is expected to boost antiviral performance.

"The technology is highly versatile because a variety of organic catalysts can be combined with the simple rhodium catalyst," says Shigeki Matsunaga. "It is expected to help make core chemical structures for nucleotide medicine, which is gaining attention as a next-generation medicine to treat a number of conditions cheaply and in an environmentally friendly way."

###

This research was conducted as part of the Strategic Basic Research Programs of the Japan Science and Technology Agency (JST).

Media Contact

Naoki Namba
81-011-706-2185
@hokkaidouni

https://www.global.hokudai.ac.jp/

Original Source

https://www.global.hokudai.ac.jp/blog/hybrid-catalyst-with-high-enantiomer-selectivity/ http://dx.doi.org/10.1038/s41929-018-0106-5

Share12Tweet8Share2ShareShareShare2

Related Posts

Easing Caregiver Stress for Heart Surgery Families

October 11, 2025

Unveiling Kidney Functions with Spatial Proteomics

October 11, 2025

Radiation-Free Cochlear Implant Positioning in Kids

October 11, 2025

COVID-19 Pandemic Effects on Childhood Asthma Uncovered

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1207 shares
    Share 482 Tweet 301
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    86 shares
    Share 34 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Easing Caregiver Stress for Heart Surgery Families

Essential Role of Negative Training Data in Antibody Predictions

Unveiling Kidney Functions with Spatial Proteomics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.