• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Hybrid AI-powered computer vision combines physics and big data

Bioengineer by Bioengineer
June 14, 2023
in Chemistry
Reading Time: 3 mins read
0
Machine learning pipelines
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from UCLA and the United States Army Research Laboratory have laid out a new approach to enhance artificial intelligence-powered computer vision technologies by adding physics-based awareness to data-driven techniques.

Machine learning pipelines

Credit: Achuta Kadambi/UCLA Samueli

Researchers from UCLA and the United States Army Research Laboratory have laid out a new approach to enhance artificial intelligence-powered computer vision technologies by adding physics-based awareness to data-driven techniques.

Published in Nature Machine Intelligence, the study offered an overview of a hybrid methodology designed to improve how AI-based machinery sense, interact and respond to its environment in real time — as in how autonomous vehicles move and maneuver, or how robots use the improved technology to carry out precision actions.

Computer vision allows AIs to see and make sense of their surroundings by decoding data and inferring properties of the physical world from images. While such images are formed through the physics of light and mechanics, traditional computer vision techniques have predominantly focused on data-based machine learning to drive performance. Physics-based research has, on a separate track, been developed to explore the various physical principles behind many computer vision challenges.

It has been a challenge to incorporate an understanding of physics — the laws that govern mass, motion and more — into the development of neural networks, where AIs modeled after the human brain with billions of nodes to crunch massive image data sets until they gain an understanding of what they “see.” But there are now a few promising lines of research that seek to add elements of physics-awareness into already robust data-driven networks.

The UCLA study aims to harness the power of both the deep knowledge from data and the real-world know-how of physics to create a hybrid AI with enhanced capabilities. 

“Visual machines — cars, robots, or health instruments that use images to perceive the world — are ultimately doing tasks in our physical world,” said the study’s corresponding author Achuta Kadambi, an assistant professor of electrical and computer engineering at the UCLA Samueli School of Engineering. “Physics-aware forms of inference can enable cars to drive more safely or surgical robots to be more precise.”

The research team outlined three ways in which physics and data are starting to be combined into computer vision artificial intelligence:

  •  Incorporating physics into AI data sets
    Tag objects with additional information, such as how fast they can move or how much they weigh, similar to characters in video games
     
  • Incorporating physics into network architectures
    Run data through a network filter that codes physical properties into what cameras pick up
     
  • Incorporating physics into network loss function
    Leverage knowledge built on physics to help AI interpret training data on what it observes

These three lines of investigation have already yielded encouraging results in improved computer vision. For example, the hybrid approach allows AI to track and predict an object’s motion more precisely and can produce accurate, high-resolution images from scenes obscured by inclement weather.

With continued progress in this dual modality approach, deep learning-based AIs may even begin to learn the laws of physics on their own, according to the researchers.

The other authors on the paper are Army Research Laboratory computer scientist Celso de Melo and UCLA faculty Stefano Soatto, a professor of computer science; Cho-Jui Hsieh, an associate professor of computer science and Mani Srivastava, a professor of electrical and computer engineering and of computer science.

The research was supported in part by a grant from the Army Research Laboratory. Kadambi is supported by grants from the National Science Foundation, the Army Young Investigator Program and the Defense Advanced Research Projects Agency. A co-founder of Vayu Robotics, Kadambi also receives funding from Intrinsic, an Alphabet company. Hsieh, Srivastava and Soatto receive support from Amazon.

 

 



Journal

Nature Machine Intelligence

DOI

10.1038/s42256-023-00662-0

Method of Research

Commentary/editorial

Subject of Research

Not applicable

Article Title

Incorporating physics into data-driven computer vision

Article Publication Date

1-Jun-2023

COI Statement

Achuta Kadambi is an employee, receives salary and owns stock in Intrinsic (an Alphabet company); and is a co-founder and owns stock in Vayu Robotics. Celso de Melo declares no competing interests. Cho-Jui Hsieh, Mani Srivastava and Stefano Soatto hold employment, draw salary from and hold stock in Amazon.

Share12Tweet8Share2ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    285 shares
    Share 114 Tweet 71
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    120 shares
    Share 48 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Nursing Informatics Literacy with Design Learning

Cardiovascular Risks in COPD Patients Using LABA or LAMA

CSF Brain Proteins Linked to Ventricular Volume in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.