• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Hunting squid slowed by rising carbon levels

Bioengineer by Bioengineer
March 21, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

James Cook University (JCU) scientists in Australia have found high carbon dioxide levels cause squid to bungle attacks on their prey.

PhD candidate Blake Spady from JCU's ARC Centre of Excellence for Coral Reef Studies led the investigation. He said that the oceans absorb over one-quarter of all the excess carbon dioxide (CO2) released into the atmosphere by humans and this uptake of additional CO2 causes seawater to become more acidic.

"Climate models project that unless there is a serious commitment to reducing emissions, CO2 levels will continue increasing this century to reach levels that will have far-reaching effects on sea life," he said.

Mr Spady said the team chose to study cephalopods (a group that includes squid, cuttlefish and octopuses) because most previous behavioural studies have focused on fishes, and the effects of elevated CO2 on highly active invertebrates is largely unknown.

"Cephalopods also prey on just about anything they can wrap their arms around and are themselves preyed upon by a wide range of predator species, so they occupy an important place within marine food webs."

The scientists tested the effects of elevated CO2 on the hunting behaviours of pygmy squid and bigfin reef squid.

"For pygmy squid, there was a 20% decrease in the proportion of squid that attacked their prey after exposure to elevated CO2 levels. They were also slower to attack, attacked from further away, and often chose more conspicuous body pattern displays at elevated CO2 conditions.

Bigfin reef squid showed no difference in the proportion of individuals that attacked prey, but, like the pygmy squid, they were slower to attack and used different body patterns more often."

Mr Spady said both species showed increased activity at elevated CO2 conditions when they weren't hunting, which suggests that they could also be adversely altering their 'energy budgets'.

"Overall, we found similar behavioural effects of elevated CO2 on two separate cephalopod orders that occupy largely distinct niches. This means a variety of cephalopods may be adversely affected by rising CO2 in the oceans, and that could have significant consequences in marine ecosystems," said co-author Dr Sue-Ann Watson.

"However, because squid have short lifespans, large populations, and a high rate of population increase, they may have the potential to adapt to rapid changes in the physical environment," Mr Spady added.

"The fast lifestyle of squid could mean they are more likely to adapt to future ocean conditions than some other marine species, and this is the next question we intend to investigate."

###

Media Contact

Alistair Bone
[email protected]
@jcu

http://www.jcu.edu.au

http://dx.doi.org/10.1111/gcb.14098

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.