• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Human reflexes keep two-legged robot upright

Bioengineer by Bioengineer
October 30, 2019
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by L. Brian Stauffer


CHAMPAIGN, Ill. — Imagine being trapped inside a collapsed building after a disaster, wondering if anybody will be brave enough to rescue you. Suddenly, a door bursts open, and standing in the shadows is a robot. But this is not just any robot; this one has quick, humanlike reflexes and is guided by a person from a remote location who feels the same physical forces the robot is experiencing.

Engineers from the University of Illinois and the Massachusetts Institute of Technology are a step closer to human-operated robotics with their two-legged unit, named Little Hermes, which can walk, run, jump and interact with the environment in synchrony with a human operator.

João Ramos, a U. of I. mechanical science and engineering professor and former MIT researcher, collaborated with professor Sangbae Kim at MIT to develop Little Hermes, a small-scale bipedal robot designed to go places deemed unsafe for humans. The researchers report their findings in the journal Science Robotics.

“We were motivated by watching the 2011 Tohoku, Japan, earthquake, tsunami and subsequent Fukushima Dai-ichi nuclear plant disaster unfold,” Ramos said. “We thought that if a robot could have entered the power plant after the disaster, things could have ended differently. This incident was a wake-up call for the robotics community.”

Much of the current human-operated robotics research does not include any force-feedback information to the operator, Ramos said. If human-assisted robots are going to interact with the environment in a way comparable to humans, he said, the operators will need to feel the same forces that the robot “feels.”

The team developed a motion-capture suit, which is like an exoskeleton worn by a human operator, Ramos said. The suit captures the operator’s motion and the forces the operator exerts on the environment to move, and transfers that data to the robot, which reproduces the motion with little to no delay.

Click here to see a video summary of this research.

However, robots do not have an inherent sense of balance like a person does, so the researchers fit the operator with a vest that sends force-feedback information from the robot to the operator.

“If the robot begins to fall, the operator feels a push in that direction through the vest,” Ramos said. “Naturally, the operator’s reaction is to take a step to balance themselves, and the robot does the same, synchronously, preventing it from tipping over.”

Much of the current robotics research focuses on developing fully automated units, Ramos said. “I believe that we will achieve fully autonomous robotics at some point, but that is still pretty far in the future. It is advantageous to continue work with human-operated robotics rather than putting all of our efforts into programming fully autonomous robot technology. This way, humans still maintain a considerable level of control.”

There are a variety of advancements in store for Little Hermes, the researchers said. For instance, the teleoperation between the robot and operator happens through a wired side-by-side interface, but the researchers plan to use wireless technology, similar to what is used to control drones.

“We also plan to develop robot-to-human force-feedback devices to other parts of the body like the feet and hands,” Ramos said. “Additionally, everything we have developed so far is not constrained to bipedal robots; any of the technology transfers easily to other mobile systems like quadrupedal and wheeled robots.”

###

Hon Hai Precision Industry Co. Ltd. and Naver Labs Corporation supported this research.

Editor’s notes:

To reach João Ramos, email [email protected].

The paper “Dynamic locomotion synchronization of bipedal robot and human operator via bilateral feedback teleoperation” is available from the U. of I. News Bureau [LINK: [email protected]].

Media Contact
Lois Yoksoulian
[email protected]
217-244-2788

Original Source

https://news.illinois.edu/view/6367/804015

Tags: Mechanical EngineeringRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AFAR Secures Over $5.7 Million NIH Renewal Funding for Nathan Shock Centers Coordinating Center

August 15, 2025
Immunotherapy Prolongs Survival in Patients with Rare Skin Cancer

Immunotherapy Prolongs Survival in Patients with Rare Skin Cancer

August 15, 2025

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

August 15, 2025

HACD3 Drives NSCLC by Inhibiting MKK7/MAPK10

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AFAR Secures Over $5.7 Million NIH Renewal Funding for Nathan Shock Centers Coordinating Center

Immunotherapy Prolongs Survival in Patients with Rare Skin Cancer

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.