• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Human-machine interfaces work underwater, generate their own power

Bioengineer by Bioengineer
August 9, 2022
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, August 9, 2022 – Wearable human-machine interface devices, HMIs, can be used to control machines, computers, music players, and other systems. A challenge for conventional HMIs is the presence of sweat on human skin.

Magnetoelastic sensor array

Credit: The Jun Chen Research Group at UCLA: https://www.junchenlab.com/

WASHINGTON, August 9, 2022 – Wearable human-machine interface devices, HMIs, can be used to control machines, computers, music players, and other systems. A challenge for conventional HMIs is the presence of sweat on human skin.

In Applied Physics Reviews, by AIP Publishing, scientists at UCLA describe their development of a type of HMI that is stretchable, inexpensive, and waterproof. The device is based on a soft magnetoelastic sensor array that converts mechanical pressure from the press of a finger into an electrical signal.

The device involves two main components. The first component is a layer that translates mechanical movement to a magnetic response. It consists of a set of micromagnets in a porous silicone matrix that can convert the gentle fingertip pressure into a magnetic field variation.

The second component is a magnetic induction layer consisting of patterned liquid metal coils. These coils respond to the magnetic field changes and generate electricity through the phenomenon of electromagnetic induction.

“Owing to the material’s flexibility and durability, the magnetoelastic sensor array can generate stable power under deformations, such as rolling, folding, and stretching,” said author Jun Chen, from UCLA. “Due to these compelling features, the device can be adopted for human-body powered HMI by transforming human biomechanical activities into electrical signals.”

The power required to run the HMI comes from the wearer’s movements. This means no batteries or other external power components are required, rendering the HMI more environmentally friendly and sustainable.

The device was tested in a variety of real-world situations, including in the presence of a water spray, such as might exist in the shower, a rainstorm, or during vigorous athletic activity. The device worked well when wet, since the magnetic field was not greatly affected by the presence of water.

The investigators studied a range of fabrication and assembly techniques to optimize the biomechanical-to-electrical energy conversion of the device. They found they could achieve a balance between performance and flexibility by controlling the thickness of the flexible film and the concentration of the magnetic particles.

To test their system, the investigators carried out a series of experiments in which a subject applied finger taps to turn a lamp off and on and control a music player.

“Our magnetoelastic sensor array not only wirelessly functions as the on and off buttons of a lamp but also controls a music player’s command features, representing the actions of play, pause, next, and previous,” Chen said.

These tests promise new applications for versatile water-resistant HMIs that can be used to control many types of smart devices.

###

The article “A programmable magnetoelastic sensor array for self-powered human-machine interface” is authored by Jing Xu, Trinny Tat, Xun Zhao, Yihao Zhou, Diantha Ngo, Xiao Xiao, and Jun Chen. The article will appear in Applied Physics Reviews on Aug. 9, 2022 (DOI: 10.1063/5.0094289). After that date, it can be accessed at https://aip.scitation.org/doi/full/10.1063/5.0094289.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.

###



Journal

Applied Physics Reviews

DOI

10.1063/5.0094289

Article Title

A programmable magnetoelastic sensor array for self-powered human-machine interface

Article Publication Date

9-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.