• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Human activity can influence the gut microbiota of Darwin’s finches in the Galapagos

Bioengineer by Bioengineer
April 25, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Junk food irresistible even for birds

IMAGE

Credit: Sarah Knutie

In the Galapagos Islands, Darwin’s finches drawn to junk food are experiencing changes in their gut microbiota and their body mass as compared to finches that don’t encounter human food, according to a new University of Connecticut study.

The study of Darwin’s Finches, published today in Molecular Ecology, builds upon a study on the effects of human activity on finch diet in the same location, says Sarah Knutie, assistant professor of ecology and evolutionary biology at UConn.

Researchers studied fecal samples and body mass data from female finches, who are the main caretakers for nestlings, or baby birds. They collected the fecal samples from birds in urban areas, where they would encounter human food, and in rural areas, where they were less likely to encounter human food, and used those to characterize the birds’ gut microbiota.

Previous studies have shown that finch populations living near humans recognized human food as food, whereas the finches living in areas with less human activity don’t recognize human food as something they can eat.

In total, researchers studied close to 100 finches, focusing on breeding female small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis) in March 2016 on the eastern coast of Santa Cruz Island, Galapagos Islands, Ecuador.

The Galapagos Islands are an ideal location for studying the effects of fairly recent human impacts on ecosystems. The islands have become more and more populated in the past 30 years, largely due to a growing tourism industry. One of the islands, for example, has a population of about 12,000; and where there are humans, there are impacts to the ecosystem.

The researchers found that the morphology of the finches – their physical characteristics – differs among sites. Finches in urban areas were larger and had higher body mass than their country cousins. In fact, finches living among human populations were between 6 and 13 percent heavier than birds at sites with less or no human presence, says Knutie.

In analyzing fecal samples from the finches, Knutie says, “finches living in areas where there is a lot of human activity have different gut microbiota communities than those living in areas with less human activity.” Specifically, the diversity of gut bacteria was lower at the site with human presence compared to the site without human presence.

The differences in microbiota are also clear, but the consequences are not.

Knutie says that there could be consequences of these changing microbiotas for nestlings and brooding female birds because they are at risk of exposure to the invasive parasite Philornis downsi, a parasite that threatens to lead to regional extinctions of finch populations.

“Since gut microbiota can affect the immune system, junk food finches may have a different immune system response to an invasive parasite than finches that feed on their natural diet,” Knutie says.

However, more research needs to be done to determine the long-term effects on the changes in microbiota.

Knutie led the study along with Kiyoko Gotanda, University of Cambridge; Jaime A. Chavez, Universidad San Francisco de Quito. They will continue to unravel the impacts that human development is having on the Galapagos finches, often referred to as the classic example of adaptation in evolution.

###

The work was supported by crowdfunding through a small startup company called Instrumentl, along with more traditional grants and the University of Connecticut.

Media Contact
Elaina Hancock
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/mec.15088

Tags: BiologyEcology/EnvironmentMicrobiology
Share13Tweet7Share2ShareShareShare1

Related Posts

blank

An Ever-Present Architectural Pattern Found Throughout Nature

November 11, 2025
Phage Protein Hijacks Host Enolase to Block Immunity

Phage Protein Hijacks Host Enolase to Block Immunity

November 11, 2025

Vmplc1 Regulates Valsa Mali’s Pathogenicity in Cold

November 11, 2025

New Biomarker Linked to Lung Decline in COPD

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Finds GLP-1 Medications Significantly Reduce Mortality in Colon Cancer Patients

An Ever-Present Architectural Pattern Found Throughout Nature

Biochar Enhances Nutrient Signaling in African Spinach

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.