• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

How well do we understand the relation between incorrect chromosome number & cancer?

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: CSHL Public Affairs

Cold Spring Harbor, NY – Over a century ago, a German-born scientist experimenting with impregnated sea urchin eggs had an insight that led to one of the first modern theories of cancer. Theodor Boveri linked incorrect chromosome number in urchin embryos with abnormal development. In 1902 he reasoned that having the wrong number of chromosomes could cause cells to grow uncontrollably and become the seeds of cancerous tumors.

Today in the journal Cancer Cell, Cold Spring Harbor Laboratory (CSHL) Fellow Jason Sheltzer, Ph.D., and colleagues at CSHL and MIT report surprising results of experiments intended to explore the consequences of having too many or too few chromosomes, a phenomenon that biologists call aneuploidy (AN-you-ploid-ee).

Ever since Boveri's era, it's been known that cells in most cancers – 90% of solid tumors and 75% of blood cancers – have abnormal chromosome numbers. (Most human cells normally have 46 chromosomes: two sets of 23, one set inherited from each parent.) The newly published experiments suggest the relation between aneuploidy and cancer is more complex than previously believed.

"Boveri brilliantly hypothesized that having the wrong chromosome number disrupted an equilibrium in cells between signals that promote and inhibit proliferation, leading normal cells to be transformed into cancerous ones" Sheltzer says. "We set out to test this in cell lines derived from mice and humans, and came up with a result we definitely did not expect – which then led us to dig deeper for answers."

Sheltzer, who began his project in the laboratory of Dr. Angelika Amon at MIT and carried it to conclusion in his own research group at CSHL, placed two sets of otherwise identical cells in culture dishes, side by side. One set consisted of cells with normal chromosome number; the other set, cells with a single extra chromosome. They observed that cells in the aneuploid set grew much more slowly. This was all the more perplexing given that both sets of cells had been primed for cancerous transformation, via the activation of cancer-promoting genes called oncogenes. Moreover, when the pre-malignant aneuploid cells were injected into rodents, they consistently formed smaller tumors than the pre-malignant cells with normal chromosome numbers.

If having one extra chromosome caused an anti-tumorigenic effect in pre-malignant cells, then perhaps aneuploidy was not, in itself, a direct cause of cancer. This raised an obvious question, however: why are human cancer cells overwhelmingly aneuploid?

More experiments led the researchers to a new hypothesis: that the chromosome instability that unquestionably accompanies having an extra chromosome causes some cells to evolve in ways that enhance their ability to survive, and also causes them to acquire pro-cancer features.

This is what the team observed in some of their cultured aneuploid cells. "We noticed that the aneuploid cells would start out growing very poorly. But then, in some cases, if we left them alone for a few weeks, something would happen and overnight they would begin growing much, much more rapidly," Sheltzer says.

This phenomenon almost never happened in sets of control cells that were pre-malignant but still had a normal chromosome number. "But in the cells that started out aneuploid – with a single extra chromosome – these cells now exhibited different aneuploidy once their rapid growth spurt began," Sheltzer says. Some lost the extra chromosome they originally had, but added one or more others. Others gained or lost whole chromosomes, but gained or lost fractions of other chromosomes.

In short, the suddenly awakened cells displayed massive genomic instability, quite beyond their simple aneuploid condition at the start of the experiments. Sheltzer's team proposes that these cells rapidly evolved to acquire different mutations that would confer a survival benefit – perhaps enabling them to grow in new environments, just as cancer cells that become metastatic evolve so as to be able to detach from their tissue of origin and grow at different sites in the body. "We think this rapid evolution could allow the aneuploid cells to acquire some of the pro-cancer characteristics that might promote cancer development or cause a cancer in a person to proliferate," Sheltzer says.

Partly based on his MIT Ph.D. thesis research performed in yeast, Sheltzer suspects aneuploidy causes errors in DNA replication, as well as problems with chromosome segregation during cell division. The accumulation of such problems over time, he says, may be triggering the inflection point in the aneuploid cells' growth that his team reports in the experiments published today.

Having an irregular number of chromosomes, almost by definition, leads to imbalances in the numbers of proteins expressed in aneuploid cells. In this respect, the new work echoes the speculation by Boveri over a century ago linking abnormal chromosome number with an imbalance between pro- and anti-proliferative signals in cells. Sheltzer will continue to explore the evolution of aneuploid cells, including the question of whether the rapid evolution seen in pre-malignant cells might account for their subsequent ability to resist chemotherapy.

###

The research described here was supported by: National Institute of Health GM056800 and the Kathy and the Curt Marble Cancer Research Fund; Whitaker Health Sciences Fund Fellowship; MIT School of Science Fellowship in Cancer Research.

"Single-chromosome gains commonly function as tumor suppressors" appears January 12, 2017 in Cancer Cell. The authors are: Jason M. Sheltzer, Julie H. Ko, John M. Replogle, Nicole C. Habibe Burgos, Erica S. Chung, Colleen M. Meehl, Nicole M. Sayles, Verena Passerini, Zuzana Storchova, and Angelika Amon. The paper can be accessed at: http://www.cell.com/cancer-cell/home

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program hosts more than 12,000 scientists from around the world each year on its campuses in Long Island and in Suzhou, China. The Laboratory's education arm also includes an academic publishing house, a graduate school and programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Media Contact

Peter Tarr
[email protected]
516-367-5055
@CSHLnews

Cold Spring Harbor Laboratory – Advancing the frontiers of biology through education and research

Share12Tweet8Share2ShareShareShare2

Related Posts

Physicists Unravel the Enigma of Mysterious Membrane Dynamics

Physicists Unravel the Enigma of Mysterious Membrane Dynamics

August 1, 2025
blank

Niclosamide Nanohybrid Trial for Mild-Moderate COVID-19

August 1, 2025

HADHA Controls JAK/STAT3 in Glioblastoma via Metabolism

August 1, 2025

Study Finds Medicare Could Cut $3.6 Billion in Costs Without Impacting Older Adults

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Physicists Unravel the Enigma of Mysterious Membrane Dynamics

Niclosamide Nanohybrid Trial for Mild-Moderate COVID-19

HADHA Controls JAK/STAT3 in Glioblastoma via Metabolism

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.