• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How water can split into two liquids below zero

Bioengineer by Bioengineer
January 25, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Did you know that water can still remain liquid below zero degrees Celsius? It is called supercooled water and is present in refrigerators. At even smaller temperatures, supercooled water could exist as a cocktail of two distinct liquids. Unfortunately, the presence of ice often prevents us from observing this phenomenon. So physicists had the idea of replicating the tetrahedral shape of water molecules — using DNA as a scaffold to create tetrahedral molecules — and thus removing the interference of ice formation. This approach allowed Simone Ciarella from the University of Rome, Italy, and his colleagues to confirm that, in theory, a dual liquid phase is possible in sub-zero water and any other liquids made of tetrahedral molecules. These results have been published in EPJ E. It is a great tale of how the underlying microscopic shape determines the overall macroscopic form.

The DNA origami technique is a kind of nanotech version of playing with Legos, assembling building blocks to create shapes at will. However, it is rather difficult to do it experimentally. The authors instead opted to use simulation to test how tetrahedral molecules — where the arms of the tetrahedron are composed of six hard cylinders — stack up and evolve over time.

The authors confirmed previously published ideas suggesting that it is the structure of the monomers and their network which makes it theoretically possible to have a dual liquid phase: one with high-density and one with low-density liquid. This is because the resulting lattice is sufficiently empty to allow for partial interpenetration of molecules. And it is sufficiently flexible to avoid crystallisation into ice, at least on the numerical time scale used in the study.

Then, Ciarella and his colleagues studied the tetrahedral molecules themselves with a recently introduced technique, called Successive Umbrella Sampling, to calculate information related to thermodynamics.

###

Reference: Towards the observation of a liquid-liquid phase transition in patchy origami tetrahedra: a numerical study. S. Ciarella, O. Gang, and F. Sciortino (2016), Eur. Phys. J. E 39: 131, DOI 10.1140/epje/i2016-16131-5

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

EFT for Managing Kinesiophobia in Rheumatoid Arthritis Patients

November 3, 2025
blank

Enhancing Safety of Implanted Orthopedic Devices with Biomaterial Vaccines

November 3, 2025

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025

Smartphones Enable Monitoring of Patients with Neuromuscular Diseases

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

EFT for Managing Kinesiophobia in Rheumatoid Arthritis Patients

Enhancing Safety of Implanted Orthopedic Devices with Biomaterial Vaccines

New Study Uncovers Variation in Viral Risk Among Bat Species

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.