• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How to to bring lithium-air batteries closer to practice

Bioengineer by Bioengineer
January 30, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Daniil Itkis

Scientists from the Faculties of Materials Science and Chemistry, Lomonosov Moscow State University, are working on improvement of lithium-air batteries, which can significantly exceed the key parameters of lithium-ion systems. The research results are available in the article, published in the Journal of Physical Chemistry C.

Scientists and producers usually face a problem to elaborate batteries of new types: lighter but at the same time more powerful and with higher energy storage capacity. One of the possible ways to do that is to replace modern lithium-ion batteries by so called lithium-air batteries. Such batteries would be able to accumulate five times more power than usual lithium-ion ones. One area, where they could make revolution, is electric cars, which now use lithium-ion batteries.

Scientists from the Lomonosov Moscow State University have devoted their study to the processes of electrochemical oxygen reduction in a lithium-air battery. The lithium-air battery operates in the following way: when battery discharges, the negative electrode, represented by lithium foil, dissolves forming lithium ions, which move through the electrolyte layer to the positive electrode. The positive electrode is a porous carbon sponge wetted by the electrolyte. Atmospheric oxygen coming into a cell from the environment dissolves in electrolyte and reaches the carbon positive electrode. Right at the interface of carbon and electrolyte one of the key processes – electrochemical oxygen reduction – proceeds. Oxygen molecules receive electrons from the carbon material and after that connect with lithium ions. As a result, we get a battery discharge product, namely, solid lithium peroxide, which settles inside the pores in carbon. Peroxide, however, is formed not immediately. First, very active particles – superoxide anions – are produced. Only after some time these species are converted to a final product.

Lithium-ion battery operation is quite different. In contrast, there is no lithium metal in it: both in negative and positive electrodes lithium exists in the form of ions (here the name originates from). The specific energy of a lithium-ion battery achieved for today is about 220-240 W?h/kg (calculated per cell mass with battery case included). Active materials, which accommodate lithium ions, contributes more than half of the cell weight. The rest refers to electrolyte, current collectors, casing materials and various additives. As there is no need for an active materials for lithium ions hosting in a lithium-air battery, the battery mass is lower. For this reason, much higher specific energy can be acheived in such batteries.

Daniil Itkis, Ph.D. in Chemistry, a Senior Researcher at the Inorganic Chemistry Department of the Faculty of Chemistry, Lomonosov Moscow State University, who is one of the co-authors, says: "Elaboration of novel metal-air batteries with nonaqueous electrolytes and namely lithium-air power sources, after creating a lot of noise several years ago, has now reached a deadlock. It has turned out that oxygen reduction in such lithium-air batteries proceeds with many difficulties, through many stages and is accomplished by lots of side reactions. The desire, typical for many researchers and innovators, to provide the soonest commercialization of such batteries, which could exhibit much higher perfomance in comparison to lithium-ion ones, has failed due to the lack of deep understanding of the processes, taking place inside a battery."

At the moment it's impossible to recharge a lithium-air battery more than several times. After few recharge cycles the carbon positive electrode, where oxygen reduction and further reaction with lithium ions proceeds, becomes electrically passivated. It happens due to side reactions with intermediate species – superoxide anions. These particles are so active that provoke reactions of electrolyte and carbon electrode oxidation. In this process materials get damaged and an electrolyte is wasted for these side reactions. Search for sore spots in the carbon material, which suffer from such side processes, will help scientists to bring lithium-air batteries closer to practice and consequently transfer them from laboratory to scaled-up fabrication.

Previously, scientists from the Lomonosov Moscow State University in collaboration with American colleagues have found that oxygen reduction could proceed differently, depending on the peculiarities of the electrolyte used. Now Daniil Itkis' scientific team has shown that the mechanism of the reaction could vary also depending on the degree of the carbon electrode material imperfection. In their project scientists have compared how the process proceeds on different model graphitic electrodes. In their earlier work scientists assumed that an attack of superoxide anions on carbon materials started in places where there are defect sites in carbon. In the current study scientists have proved this hypothesis in the electrolytes often used in lithium-air battery research.

Daniil Itkis continues: "In general, the result is disappointing as there are no carbon materials without imperfections in reality. It means that we should look for ways which can help to shift the region where the reaction proceeds, farther from the carbon material. Now we are actively thinking this matter over."

Daniil Itkis adds: "It's difficult to say now whether lithium-air batteries will be cheaper or more expensive than lithium-ion ones. We could assume that they will be cheaper. But the problem is often hidden in details. It can turn out that in order to reach rechargeability we'd have to add some very expensive additives. I could say that we won't get any prototypes till 2020-2025".

###

Media Contact

Vladimir Koryagin
[email protected]

http://www.msu.ru

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Vitamins’ Role and Mechanisms in Obesity Control

September 18, 2025

Engineered Prime Editors Minimize Genomic Errors

September 18, 2025

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

September 18, 2025

Groundbreaking Report Reveals Strategies to Address COVID-19’s Lasting Impact on Cardiovascular Health

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vitamins’ Role and Mechanisms in Obesity Control

Engineered Prime Editors Minimize Genomic Errors

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.