• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How the grid cell system of the brain maps mental spaces

Bioengineer by Bioengineer
October 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It has long been known that so-called place cells in the human hippocampus are responsible for coding one's position in space. A related type of brain cell, called grid cells, encodes a variety of positions that are evenly distributed across space. This results in a kind of honeycomb pattern tiling the space. The cells exhibiting this pattern were discovered in the entorhinal cortex. How exactly the grid cell system works in the human brain, and in particular with which temporal dynamics, has until now been speculation. A much-discussed possibility is that the signals from these cells create maps of "cognitive spaces" in which humans mentally organize and store the complexities of their internal and external environments.

A European-American team of scientists has now been able to demonstrate, with electrophysiological evidence, the existence of grid-like activity in the human brain. Under the direction of Prof. Christian Doeller of the Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS) in Leipzig and Dr. Tobias Staudigl of the Donders Institute for Brain, Cognition and Behavior, Radboud University, The Netherlands, researchers used various methods to visualize grid cell activity while subjects explored images of everyday scenes. "We assume that these spatial coding principles in the brain form the basis of higher cognitive performance–here in this study, in the field of perception, but possibly also in decision-making or even in social interaction," explained Prof. Doeller, who is now continuing his research as the new director of the MPI CBS in Leipzig.

To demonstrate the dynamics of the brain activity, the scientists performed independent measurements using two different methods. Thirty-six healthy participants were scanned using magnetoencephalography (MEG) and intracranial electroencephalography (EEG) was measured in an epileptic patient. During an MEG scan, subjects sit under a kind of helmet that measures magnetic fields caused by the electrical currents of active nerve cells. "This enabled us to record data that is an expression of the momentary total activity of the brain, without any delay" explains Tobias Staudigl, first author of the study. He is currently conducting research at the Cedars-Sinai Medical Center in Los Angeles (USA). The participants viewed 200 pictures containing both indoor and outdoor scenes. "In addition to the MEG measurements, we also recorded their eye movements using an eye-tracker to determine how they visually explored the scenes of the images shown."

In the case of the epileptic patient, the researchers took advantage of the fact that for diagnostic purposes, prior to a brain surgery, he had been implanted with electrodes that could directly record electrical activity in the brain. He was asked to look at similar pictures with indoor and outdoor scenes, as well as with animals and faces. His eye movements were also measured, allowing the scientists to obtain an additional dataset to record the activation patterns of the cells.

"We looked at whether the activity patterns of the entire grid cell system have a specific structure, as has been assumed for a few years," reports Prof. Doeller. "By showing the subjects pictures of visual scenes, we were able to demonstrate that. This is the first time that this effect has been measured by MEG and EEG recordings, and it opens up many exciting opportunities for further research. For example, it could lead to new biomarkers for diseases such as Alzheimer's in the future. This is because in young adults with an increased risk of Alzheimer's disease, we have already seen that the activity of the grid cell system is reduced."

###

Media Contact

Prof. Christian Doeller
[email protected]
49-034-199-402-275
@mpi_cbs

http://www.cbs.mpg.de/en

https://www.cell.com/current-biology/fulltext/S0960-9822(18)31260-0

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2018.09.035

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Virulence Strategies in Sugarcane Smut Pathogen

November 5, 2025
Scripps Research Team Discovers Sugar Molecules Key to Initiating Placental Formation

Scripps Research Team Discovers Sugar Molecules Key to Initiating Placental Formation

November 5, 2025

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

November 5, 2025

Sex-Based Cognitive Responses to PM2.5 Risk

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Food Focus in Binge Eating: Training Limitations Revealed

Double Disadvantage: The Impact is Greater Than Twice as Severe

Oxidative Stress Linked to Abnormal Repetitive Behaviors in Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.