• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

How the brain recognizes familiar faces

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Laboratory of Neural Systems at The Rockefeller University

There's nothing quite like the rush of recognition that comes from seeing a familiar face. But scientists have been hard-pressed to explain how we identify well-known faces–or how that process differs from the way we perceive unfamiliar ones.

Now researchers at The Rockefeller University have begun to unravel the mystery of how the brain recognizes familiar faces. Working with rhesus macaque monkeys–primates whose face-processing systems closely resemble our own–Winrich Freiwald, head of the Laboratory of Neural Systems, and Sofia Landi, a graduate student in the lab, discovered two previously unknown areas of the brain involved in face recognition: areas capable of integrating visual perception with different kinds of memory. Their findings were reported today in Science.

Don't I know you?

Scientists have long known that the brain contains a network of areas that respond selectively to faces as opposed to other kinds of objects (feet, cars, smartphones). They also knew that humans process familiar and unfamiliar faces very differently. For example, we excel at recognizing pictures of familiar faces even when they are disguised by poor lighting or shot at odd angles. But we struggle to recognize even slightly altered images of the same face when it is unfamiliar to us: two pictures of a stranger we've never seen before, for instance, shown from different perspectives or in dim light.

Yet attempts at divining the neural basis for these differences between familiar and unfamiliar face perception in humans have proven inconclusive. So Freiwald and Landi turned instead to macaques, close evolutionary cousins whose face processing networks are better understood and more easily studied than our own.

Using functional magnetic resonance imaging, Landi and Freiwald measured the animals' brain activity as they responded to pictures of other monkeys' faces. Those faces fell into three categories: personally familiar ones belonging to monkeys that the macaques had lived with for years; visually familiar ones whose pictures they had seen hundreds of times; and totally unfamiliar ones. (For comparison's sake, they also showed the monkeys pictures of personally familiar, visually familiar, and unfamiliar objects.)

The researchers expected the macaque face processing network to respond in much the same way to the first two types of faces. But instead, the entire system showed more activity in response to the faces of long-time acquaintances. Faces that were only visually familiar, meanwhile, actually caused a reduction of activity in some areas.

"The whole network somehow distinguishes personally familiar faces from visually familiar faces," says Landi.

The picture changes

Even more surprisingly, the faces of animals whom the macaques had known for years prompted the activation of two previously unknown face-selective areas.

One is located in a region of the brain associated with so-called declarative memory, which consists of facts and events that can be consciously recalled. The other area is embedded in a region associated with social knowledge, such as information about individuals and their position within a social hierarchy–"a specific form of memory," Freiwald says, "that is highly developed in primates, and certainly in humans."

These two newly discovered brain areas offered up yet another surprise. When the researchers showed the macaques blurry images of personally familiar faces, which gradually became sharply defined over the course of half a minute or so, the activity of previously known face-processing areas increased steadily over time (imagine a diagonal line climbing upwards on a graph). But the new areas first showed little or no initial increase in activity, followed by a sudden surge (imagine a flat line followed by a steep upwards curve)–an all-or-nothing response that evokes what Landi calls "the sudden 'aha' moment" we experience when we recognize a familiar face.

These new findings will allow the researchers to further investigate the neural mechanisms that underlie face recognition–and how the brain responds to different kinds of familiarity.

"We'll now be able to study these things with much more precision than was possible before," Freiwald says.

And because they reside in regions of the brain that are associated with different kinds of information, these novel areas should also provide an inroad to understanding cognitive and perceptual processes that go well beyond vision.

"It opens a window to explore the interaction between face perception, memory, and social knowledge," says Landi, who is already working on new experiments designed to do precisely that.

###

Media Contact

Katherine Fenz
[email protected]
212-327-7913
@rockefelleruniv

http://www.rockefeller.edu

Original Source

https://www.rockefeller.edu/news/20303-brain-recognizes-familiar-faces/ http://dx.doi.org/10.1126/science.aan1139

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025
Gut γδ T17 Cells Drive Brain Inflammation via STING

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025

Agent-Based Framework for Assessing Environmental Exposures

August 2, 2025

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    38 shares
    Share 15 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.