• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How the anthrax toxin forms a deadly ‘conveyer belt’

Bioengineer by Bioengineer
September 26, 2016
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have built a three-dimensional map of the anthrax toxin that may explain how it efficiently transfers its lethal components into the cytoplasm of infected cells. The study, “Structure of anthrax lethal toxin prepore complex suggests a pathway for efficient cell entry,” which will be published online September 26 ahead of print in The Journal of General Physiology, suggests that the bacterial protein acts as a “conveyer belt” that allows toxic enzymes to continuously stream across cell membranes.

toxin
The crystal structures of the anthrax toxin LF and PA subunits are superimposed on the 3-D map of the prepore complex obtained by cryo–electron microscopy. The side view (left) and top-down view (right) show three LF molecules perched above the rim of the pore formed by seven PA subunits. Credit: Fabre et al., 2016

During anthrax infections, the bacterium Bacillus anthracis secretes a toxin consisting of two related enzymes named lethal factor (LF) and edema factor (EF) and a third protein called protective antigen (PA). The three proteins bind to each other and are engulfed into the endosomes of host cells. Seven to eight PA proteins then form a pore in the endosomal membrane, allowing LF and EF to translocate into the cytoplasm where they can damage, and ultimately kill, the host cell. To pass through the pore, however, LF and EF must unfold in the endosomal lumen before refolding into their active conformations in the cytoplasm.

A team of researchers led by Isabelle Rouiller of McGill University in Montreal and Robert Liddington of the Sanford Burnham Prebys Medical Discovery Institute in La Jolla used cryo-electron microscopy to build a three-dimensional map of the “prepore” complex formed by PA and LF just before the translocation process begins. The map showed seven PA proteins surrounding a narrow pore, with three LF molecules perched at the rim, ready to be translocated. As well as binding to the PA subunits, each LF molecule also bound to its clockwise neighbor. The researchers think that these inter-LF interactions may help to hold the toxic enzymes in place and prevent them from unfolding prematurely.

Moreover, as the first LF molecule enters the pore, its neighbor would be destabilized so that it could immediately follow on the first molecule’s tail. Additional LF proteins could bind to vacated spots on the pore’s rim, leading to a continuous stream of molecules into the cytoplasm. Indeed, electrophysiological recordings of the prepore complex in action supported the idea that it can continuously translocate LF molecules. “We have demonstrated that the anthrax pore can translocate full-length LF in a highly efficient, fast, and robust fashion,” says Rouiller. “The pore can effectively remain fully loaded for extended periods, acting as a conveyer belt while translocating a continuous ‘daisy chain’ of deadly LF molecules.”

Web Source: The Rockefeller University Press.

Reference:

Lucien Fabre, Eugenio Santelli, Driss Mountassif, Annemarie Donoghue, Aviroop Biswas, Rikard Blunck, Dorit Hanein, Niels Volkmann, Robert Liddington, Isabelle Rouiller. Structure of anthrax lethal toxin prepore complex suggests a pathway for efficient cell entry. The Journal of General Physiology, 2016; 148 (4): 313 DOI: 10.1085/jgp.201611617

The post How the anthrax toxin forms a deadly ‘conveyer belt’ appeared first on Scienmag.

Share30Tweet8Share2ShareShareShare2

Related Posts

Optimal Blastocyst Count for PGT-A in RPL Patients

October 3, 2025

Narrative Nursing Boosts Diabetes Management in Seniors

October 3, 2025

From Parkinson’s to Rare Diseases: Scientists Discover a Key Cellular Health Switch

October 3, 2025

SMFM Releases Updated Guidelines for Diagnosing and Managing Heart Failure in Pregnancy and Postpartum

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance CO₂ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.