• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How slow muscle fibers convince their neighbors to join them

Bioengineer by Bioengineer
September 10, 2022
in Health
Reading Time: 3 mins read
0
Rspo3 affects the differentiation of surrounding myoblasts.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have discovered that a protein excreted by type I (slow) muscle fibers, key to muscle endurance, can cause surrounding myoblasts, precursors to muscle cells, to differentiate into type I fibers. This upturns prevailing wisdom which says our fast/slow fiber ratio can’t be significantly changed. They also identified the chemical pathway by which the protein affects differentiation. Such findings may one day lead to therapies to control slow muscle health.

Rspo3 affects the differentiation of surrounding myoblasts.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have discovered that a protein excreted by type I (slow) muscle fibers, key to muscle endurance, can cause surrounding myoblasts, precursors to muscle cells, to differentiate into type I fibers. This upturns prevailing wisdom which says our fast/slow fiber ratio can’t be significantly changed. They also identified the chemical pathway by which the protein affects differentiation. Such findings may one day lead to therapies to control slow muscle health.

Skeletal muscle tissue is made up of hundreds of thousands of fibers which contract on command. However, they are not all the same. There are “slow” type I muscle fibers, important for endurance exercise, and “fast” type II fibers which can respond much more quickly but for shorter periods of time. Type I fibers might be likened to marathon runners, while type II fibers might be called sprinters. For a long time, the prevailing wisdom has been that the ratio of type I to type II fibers in our muscles is largely determined at birth.

But scientists are beginning to find that this is not the case. A team of researchers from Tokyo Metropolitan University led by Professor Nobuharu Fujii have now discovered that a protein excreted by type I muscle known as R-spondin3 (Rspo3) may hold the key to the development of new type I fibers. When myoblasts, precursors to muscle cells, were treated with Rspo3, they began to produce significantly higher amounts of Myosin Heavy Chain I (MyHC I), a protein produced by type I muscle. The effect seemed to be unique to myoblasts in early stages of their development. This means that type I fibers actively induce the formation of more type I fibers in their vicinity, excreting Rspo3 and acting on the differentiation of nearby cells. The finding sheds new light on the role of muscles in our bodies and upturns conventional wisdom which says that the ratio of type I to type II fibers can’t be changed. The team were also able to show that this happened via a specific cascade of chemical reactions known as the Wnt/beta-catenin pathway, responsible for the necessary accumulation of beta-catenin inside cells. Experiments to artificially reduce the amount of beta-catenin in cells, for example, led to suppression of increased MyHC I expression.

Type 2 diabetes and lack of exercise are two of many reasons why slow muscle fibers may atrophy. The team’s findings suggest that it is actually possible to specifically encourage the development of type I fibers through therapeutic means. For example, Rspo3 may be used directly as a treatment, or used to differentiate muscle cells taken from a patient before the tissue is replanted. If cells can excrete Rspo3 and affect surrounding cells, the benefits will be more than just the mass that is reintroduced. Such insights promise exciting new possibilities for treatments to improve muscular function, a key challenge for aging populations and society.

This work was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI Grant Numbers 20J12849, 15K16489, 24700700, 26242068), a Japan Science and Technology Agency grant for Fusion Oriented Research for Disruptive Science and Technology (JST FOREST Program no. JPMJFR205K), Sumitomo Pharma Co., Ltd. through the Partnership to Realize Innovative Seeds and Medicines, and Tokyo Metropolitan University strategic research fund for innovative research project.



Journal

Scientific Reports

DOI

10.1038/s41598-022-16640-2

Article Title

R‑spondin3 is a myokine that differentiates myoblasts to type I fibres

Article Publication Date

29-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Advancing Ophthalmology: Electronic Discharge Summaries Unveiled

October 1, 2025

Detection of Invasive Mosquito Vector Species in UK Surveillance Traps Raises Public Health Concerns

October 1, 2025

Bariatric Surgery Enhances Short-Term Employment Prospects, Long-Term Benefits Remain Unclear

October 1, 2025

eGFR Shifts in Young Inpatients Undergoing Nutritional Rehab

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    63 shares
    Share 25 Tweet 16
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Ophthalmology: Electronic Discharge Summaries Unveiled

Ancient Squamate Reveals Mosaic Anatomy Insights

Pancreatic 68Ga-FAPI PET/CT Uptake Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.