• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How pneumococci challenge our immune system

Bioengineer by Bioengineer
November 12, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pneumococci are the most common cause of respiratory tract infections, such as otitis and sinusitis, as well as of severe infections like pneumonia and meningitis. A new study from Karolinska Institutet in Sweden published in Nature Microbiology shows how the bacteria can inhibit immune cell reaction and survive inside cells to give rise to pneumonia.

"This is a paradigm shift that increases our understanding of how pneumococci cause disease, and might explain the long term consequences of pneumococcal infections such as for example heart disease," says Professor Birgitta Henriques-Normark at the Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet. "This is an important discovery that will lead to new strategies for tackling pneumococcal infections."

Pneumococci are found in the normal flora of healthy individuals, and up to 60 percent of pre-school children have the bacteria in their noses. Usually, these bacteria are harmless but they are also a common cause of otitis, pneumonia, septicaemia and meningitis. Globally, some two million people die from pneumococcal infections every year.

To find out why the bacteria only sometimes cause disease, the researchers looked more closely at the toxin pneumolysin, which is produced by the pneumococcus. This cytolethal toxin enables pathogenic effects of the bacteria.

"We made the very surprising discovery of a new property of pneumolysin," says Professor Henriques-Normark. "We found that pneumolysin is able to interact with a special receptor, MRC-1, that is found in certain immune cells, and in so doing trigger an anti-inflammatory response."

Once inside the immune cells, the bacteria can hide from further attack and possibly even grow, to eventually give rise to pneumonia.

"It has been thought that pneumolysin only induces a pro-inflammatory response, but we now show that it can also have an anti-inflammatory role" she continues. "This is because the bacteria can use pneumolysin as a means to survive the attacks of the immune system."

The study was conducted on both mouse and human cells, and when the researchers studied mice lacking the MRC-1 receptor, they observed that lower numbers of pneumococci were found in the upper respiratory tract. The researchers believe that the findings may be of importance for development of treatment and vaccines against pneumococcal infections.

###

The research was done in collaboration with a research team at the Institute of Infection and Global Health, University of Liverpool, and with the assistance of the Science for Life Laboratory Mass Spectrometry Based Proteomics Facility in Uppsala.

The Swedish arm of the research funding came from the Swedish Research Council, Stockholm County Council, the Swedish Foundation for Strategic Research (SSF) and the Knut and Alice Wallenberg Foundation.

Publication: "Pneumolysin binds to the Mannose-Receptor C type 1 (MRC-1) leading to anti-inflammatory responses and enhanced pneumococcal survival". Karthik Subramanian, Daniel R Neill, Hesham Malak, Laura Spelmink, Shadia Khandaker, Giorgia Dalla Libera Marchiori, Emma Dearing, Alun Kirby, Marie Yang, Adnane Achour, Johan Nilvebrant, Per-Åke Nygren, Laura Plant, Aras Kadioglu and Birgitta Henriques-Normark. Nature Microbiology, online 12 november 2018, doi: 10.1038/s41564-018-0280-x

Media Contact

Press Office, Karolinska Institutet
[email protected]
@karolinskainst

http://ki.se/english

http://dx.doi.org/10.1038/s41564-018-0280-x

Related Journal Article

http://dx.doi.org/10.1038/s41564-018-0280-x

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Global Gender Disparities in Alopecia Areata Risk

October 13, 2025
Innovative Lab-Grown Human Embryo Model Generates Blood Cells

Innovative Lab-Grown Human Embryo Model Generates Blood Cells

October 13, 2025

Genetic Variants Impact Milk and Reproduction in Buffalo

October 13, 2025

HSPB1 Alters Obesity Metabolism Differently by Sex

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1232 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vancomycin-Enhanced Gold Nanoparticles Boost Antibacterial Action

Varied Diets: Key to Sustainability and Health in Europe

Sound-Activated Drug Release Using Artificial Cilia System

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.