• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How plants prevent oxidative stress

Bioengineer by Bioengineer
June 8, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kobe University

When excess light energy is absorbed by plants during photosynthesis, harmful reactive oxygen species are produced. These reactive oxygen species break down important structures such as proteins and membranes, preventing them from functioning properly. Researchers have discovered the system used by plants to prevent oxidative stress and to safely carry out photosynthesis.

A research team led by Associate Professor MIYAKE Chikahiro (Kobe University Graduate School of Agricultural Science) made this discovery, which was reported in 11 journals.

The light energy use of most photosynthesizing organisms is saturated at 25-50% of sunlight. In other words, they are routinely exposed to more light energy than they need for photosynthesis. When leaves are irradiated by excess light energy, the chloroplasts that carry out photosynthesis can easily suffer oxidative stress and stop photosynthesizing.

Previously this team was the first to clarify the mechanism behind the production of reactive oxygen species. Building on these results, they developed the "pulse method" to artificially induce oxidative stress. They discovered the P700 oxidation system, used by plants to suppress the production of reactive oxygen species.

P700, a chlorophyll in the reaction center of photosystem I, is the particle that transforms oxygen into reactive oxygen species. Since the late 1980s scientists knew that P700 oxidation can be seen in environments with excess sunlight, but this team is the first to define its role. The team also discovered that P700 oxidation is essential for the growth of cyanobacteria, the ancestors of higher plant chloroplasts, and it also functions in algae, moss, ferns, gymnosperms and angiosperms.

When oxidized P700 (P700+) accumulates in the P700 oxidation system it lowers the ratio of light-stimulated P700 (P700*). P700* produces reactive oxygen species by giving electrons to oxygen, producing superoxide radicals, or producing triplet P700 that gives light energy to oxygen. The accumulation of P700 suppresses the production of reactive oxygen species via the photosynthetic electron transport system. The research team also clarified two strategies that photosynthesizing organisms have acquired to enable the P700 oxidation system to function and accumulate P700+.

The discovery of the P700 oxidation system and its role shows that photosynthetic organisms use this system as a physiological function that is indispensable in outdoor environments. This system, common to photosynthetic organisms, starts to function when excess light energy is present (caused by environmental stresses such as strong sunlight, drought, or lack of nutrients). As a result, P700 is oxidized to produce P700+. When P700 oxidation occurs, this indicates that dangerous reactive oxygen species will also be produced due to excess sunlight.

The group focused on the production of P700+ as a warning marker for reactive oxygen species, and are developing equipment to detect P700+. Monitoring P700+ could enable the early detection of risks from oxidative stress. Treatment of reactive oxygen species production using the pulse method could enable scientists to evaluate plant resistance to reactive oxygen species. The team will continue to investigate these avenues.

###

Media Contact

Eleanor Wyllie
[email protected]
@KobeU_Global

http://www.kobe-u.ac.jp/en/

Original Source

http://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2017_06_07_01.html

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

Cells Collaborate to Amplify Their Sensory Abilities

Cells Collaborate to Amplify Their Sensory Abilities

September 15, 2025
How Cheese Fungi Unravel Evolutionary Mysteries

How Cheese Fungi Unravel Evolutionary Mysteries

September 15, 2025

Grants Accelerate Training and Research in Biological Complexity

September 15, 2025

Rice Scientists Innovate ‘Molecular Magnifying Glass’ to Detect Plant Diseases Earlier

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CPAP Use Linked to Lower Pneumonia Risk in OSA

UT San Antonio School of Public Health: Advancing Community-Centered Science

Exergaming vs. Traditional Training: Impact on Sarcopenia

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.